Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The paper investigates the effect of CrN and CrN/DLC coatings deposited using the PACVD technique on the tribological and mechanical properties of 316L stainless steel. The hardness of the coatings and 316L steel was determined using the instrumental indentation method. Tribological tests were performed on a TRB3 tribometer in a rotating ball-on-disc configuration. Al2O3 balls were used as countersamples. The tests were performed under dry friction conditions and under lubrication with artificial saliva at pH 5.2 at a temperature of 39°C simulating inflammation. A scanning microscope was used to measure the thickness of the coatings, and a confocal microscope was used to study the geometric structure of the surface before and after the tribological tests. The wetting angle was measured using an optical tensiometer. The use of CrN and CrN/DLC coatings reduced the coefficient of friction by 10% and 85%, respectively, for technically dry friction and by 44% and 82% for friction with artificial saliva lubrication. The test results indicate good cooperation of the CrN and CrN/DLC coatings with the lubricant used.
B I B L I O G R A F I A1. Paszenda Z., Tyrlik-Held J.: Instrumentarium chirurgiczne, Wydawnictwo Politechniki Śląskiej,Gliwice, 2003.
2. Biomaterials Consensus Conference at the National Institute of Health, Clinical Applications ofBiomaterials. In NIH Consens Statement, 1982.
3. Bociąga D., Mitura K.: Biomedical effect of tissue contact with metallic material used for body piercingmodified by DLC coatings, Diamond and Related Materials, 17, 2008 (7–10), pp. 1410–1415.
4. Jastrzębski K., Jastrzębska A., Bociąga D.: A review of mechanical properties of Diamond-Like Carboncoatings with various dopants as candidates for biomedical applications, Acta Innovations, 22, 2017(40), pp. 40–57.
5. Piotrowska K., Madej M., Baranowicz P., Wysokińska-Miszczuk J.: The influence of diamond-likecoatings on the properties of titanium, Materials Research Proceedings, 5, 2018, pp. 84–89.
6. Poręba M., Reichert M., Sieniawski J., Zawadzka P.: Ocena powłoki diamentopodobnej wytworzonej napodłożu nadstopu niklu IN718 w procesach CVD wspomaganych plazmą wyładowania jarzeniowego,Inżynieria Materiałowa, 35, 2014 (4), pp. 295–298.
7. Watanabe M., Liu L., Ichikawa T.: Are allergy-induced implants failures actually hypersensitivereactions to titanium? A literature review, Dentistry Journal, 11, 2023 (11), p. 263.
8. Grabowska M.: Allergic reactions to titanium used in prosthodontics – review of literature, Sztuka Implantologii, 16, 2021 (2), pp. 124–127.
9. Malik S. et al.: Emerging applications of nanotechnology in dentistry, Dentistry Journal, 11, 2023 (11),p. 266.
10. Sreenivasalu P.K.P.: Nanomaterials in dentistry: current applications and figurę scope, Nanomaterials,12, 2022 (10), p. 1676.
11. Komorowski P. et al.: Comprehensive biological evaluation of biomaterials used in spinał and orthopedicsurgery, Materials, 13, 2020 (21), p. 4769.
12. Wysokińska-Miszczuk J., Piotrowska K., Paulo M., Madej M.: Composite materials used for dentalfilling, Materials, 17, 2024 (19), p. 4936.
13. Leszczyński P., Pawlak-Buś K.: Choroba zwyrodnieniowa stawów – epidemia XXI wieku, Farmacjawspółczesna, 1, 2008, pp. 79–87.
14. Stanek-Misiąg E., Gądek A.: Czy endoprotezy szyte na miarę są lepsze od standardowych? https://www.mp.pl/pacjent/ortopedia/wywiady/218206,czy-endoprotezy-szyte-na-miare-sa-lepsze-odstandardowych [dostęp: 7.11.2024].
15. Raport z ilości wszczepionych endoprotez różnych stawów za rok 2022 www.nfz.gov.pl [dostęp:8.11.2024].
16. Zasińska K., Piątkowska A.: The evaluation of the abrasive wear of the Ti13Nb13Zr alloy implantedby nitrogen ions for friction components of the hip join endoprostheses, Tribologia, 6, 2015 (264),pp. 175–186.
17. Zasińska K., Seramak T., Łubiński J.: Comparison of the abrasion resistance of the selected biomaterialsfor friction components in orthopedice endoprostheses, Tribologia, 6, 2015 (264), pp. 187–198.
18. Kręcisz B., Chomiczewska-Skóra D., Pałczyński C., Kieć-Świerczyńska M.: Uczulenie na metalea implanty medyczne, Alergia, 4, 2012, pp. 1–6.
19. Pritchett J.: Adverse reaction to metal debris: metallosis of the resurfaced hip, Current OrthopaedicPractice, 23, 2012 (1), pp. 50–58.
20. Marcinak J.: Biomateriały w chirurgii kostnej, Wydawnictwo Politechniki Śląskiej, Gliwice, 2002.
21. Muley S., Vidvans A.N., Chaudhari G.P., Udainiya S.: An assessment of ultra fine grained 316L stainlesssteel for implant application, Acta Biomaterialia, 30, 2016, pp. 408–419.
22. Sieczka Ł., Bohatyrewicz A., Pituch S.: Protheses of the hip arthroplasty yesterday and today,Rheumatology Forum, 3, 2017, pp. 216–221.
23. What is surgical steel? The role of stainless in healthcare, https://www.essentracomponents.com/en-gb/news/industries/medical-equipment/what-is-surgical-steel-the-role-of-stainless-in-healthcare [dostęp:8.11.2024].
24. Dobrzański L.A.: Materiały inżynierskie i projektowanie materiałowe. Podstawy nauki o materiałachi metaloznawstwo, WNT, Warszawa, 2006.
25. Dobrzański L.A.: Metaloznawstwo opisowe stopów żelaza, Wydawnictwo Politechniki Śląskiej,Gliwice, 2007.
26. Gierzyńska-Dolna M. Lijewski M.: Application of titanium and its alloy in biomedical engineering, Inżynieria Materiałowa, 33, 2012 (4), pp. 315–318.
27. Piotrowska K., Madej M., Ozimina D.: Assessment of the Functional Properties of 316L Steel AlloySubjected to Ion Implantation Used in Biotribological Systems, Materials, 14, 2021 (19), p. 5525.
28. Wang W. et al.: Effects of Titanium-implanted dose on the tribological properties of 316L stainlesssteel, Materials, 14, 2021 (6), p. 1482.
29. Hussein M.A. et al.: Mechanical, biocorrosion and antibacterial properties of nanocrystalline TiN coating for orthopedic applications, Ceramics International, 46, 2020 (11), pp. 18573–18583.
30. Radoń-Kobus K., Madej M.: Properties of Al2O3 ceramic coatings applied by ALD method on 100Cr6steel, Tribologia, 2, 2022, pp. 45–53.
31. Radoń-Kobus K., Madej M.: Properties of TiO2 coatings applied by Atomic Layer Deposition on100Cr6 steel, Metalurgija, 61, 2022 (3–4), pp. 657–660.
32. Rajan S.T., Subramanian B., Arockiarajan A.: A comprehensive review on biocompatibile thin films forbiomedical application, Ceramics International, 48, 2022 (4), pp. 4377–4400.
33. Niemczewska-Wójcik M.: Struktura geometryczna powierzchni ukonstytuowana w procesie obróbki elektroerozyjnej, Tribologia, 5, 2010, pp. 63–74.