Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Streszczenie: Artykuł dotyczy badania wpływu dodatku wodoru do tradycyjnego paliwa benzynowego silnika spalinowego (ICE) jako elementu hybrydowej jednostki napędowej na kluczowe wskaźniki jego sprawności i przyjazności dla środowiska. Główną uwagę poświęcono ocenie zużycia paliwa i emisji CO₂ w cyklu jezdnym NEDC. W artykule opracowano model matematyczny procesu pracy silnika spalinowego uwzględniający dodatek wodoru do mieszanki paliwowej oraz stworzono model do wyznaczania parametrów hybrydowego układu napędowego w trybach cyklu NEDC. Wyniki badania wykazały, że każde 2% dodatku wodoru do benzyny zmniejsza jednostkowe efektywne zużycie paliwa o 2,8-3,5%, w zależności od trybu prędkości. Stwierdzono, że system hybrydowy zapewnia skuteczny odzysk energii podczas hamowania, co przyczynia się do ogólnej wydajności systemu. Badanie potwierdza perspektywy wykorzystania wodoru jako dodatku do tradycyjnych paliw w celu poprawy przyjazności dla środowiska i wydajności transportu, zmniejszenia emisji CO₂ i dekarbonizacji sektora transportu. Opracowana metodologia obliczeniowa może być wykorzystana do dalszych badań i wdrażania nowych technologii w dziedzinie hybrydowych układów napędowych.
Abstract: The article is concerned with studying the impact of hydrogen additive to the traditional fuel of a petrol internal combustion engine (ICE) as part of a hybrid power plant on key indicators of its efficiency and environmental friendliness. The main attention is paid to the assessment of fuel consumption and CO₂ emissions within the NEDC driving cycle. The paper develops a mathematical model of the internal combustion engine's working process, which takes into account the addition of hydrogen to the fuel mixture, and creates a model for determining the parameters of a hybrid powertrain in the NEDC cycle modes. The results of the study showed that every 2% addition of hydrogen to petrol reduces the specific effective fuel consumption by 2.8-3.5%, depending on the speed mode. It was found that the hybrid system provides effective energy recovery during braking, which contributes to the overall efficiency of the system. The study confirms the prospects of using hydrogen as an additive to traditional fuels to improve the environmental friendliness and efficiency of transport, reduce CO₂ emissions and decarbonise the transport sector. The developed calculation methodology can be used for further research and implementation of new technologies in the field of hybrid powertrains.
B I B L I O G R A F I AAkal D, Öztuna S, Kemalettin M. A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int J Hydrogen Energ. 2020
45(60):35257-35268. https://doi.org/10.1016/j.ijhy....
CrossRef
Google Scholar
2.
Avramenko A, Lievtierov A, Bhantsev V, Hladkova N, Kirieieva V. Prospects of using hydrogen microaddition to improve diesel engine ecological indicators. Problems of Mechanical Engineering. 2019
22(2):70-75. https://doi.org/10.15407/pmach....
CrossRef
Google Scholar
3.
Geiler J, Springer K, Lorenz T, Blomberg M, Achenbach J, Bloch P. H2 engine hybrid powertrain for future light commercial vehicles. In: Heintzel A. (ed). Internationaler Motorenkongress 2023. Int. Engine Congr. 2024. Springer Vieweg. Wiesbaden 2024
1-15. https://doi.org/10.1007/978-3-....
CrossRef
Google Scholar
4.
Heffel J. NOx emission reduction in a hydrogen fueled internal combustion engine at 3000 rpm using exhaust gas recirculation. Int J Hydrogen Energ. 2003
28(11):1285-1292. https://doi.org/10.1016/S0360-....
CrossRef
Google Scholar
5.
Hennek K, Graba M, Mamala J. The influence of the throttle inclination characteristics of a SI engine on fuel consumption in driving cycles. Combustion Engines. 2017
170(3):78-83. https://doi.org/10.19206/CE-20....
CrossRef
Google Scholar
6.
Iakovenko A, Dunin A, Dushkin P, Savastenko E, Shatrov M. The influence of mass composition of water-fuel emulsion on ecological characteristics of a diesel engine. Energies. 2019
12(14):2689. https://doi.org/10.3390/en1214....
CrossRef
Google Scholar
7.
Iodice P, Langella G, Amoresano A. Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Appl Therm Eng. 2018
130:1081-1089. https://doi.org/10.1016/j.appl....
CrossRef
Google Scholar
8.
Ismatov J, Djalilov J, Fayzullayev A. Application of hydrogen as a supplement for car engines. Universum: Technical Sciences. 2021
85. https://doi.org/10.32743/UniTe....
CrossRef
Google Scholar
9.
Koszałka G, Szczotka A, Suchecki A. Comparison of fuel consumption and exhaust emissions in WLTP and NEDC procedures. Combustion Engines. 2019
179(4):186-191. https://doi.org/10.19206/CE-20....
CrossRef
Google Scholar
10.
Le TT, Sharma P, Bora BJ, Tran VD, Truong TH, Le HC et al. Fueling the future: a comprehensive review of hydrogen energy systems and their challenges, Int J Hydrogen Energ. 2024
54:791-816. https://doi.org/10.1016/j.ijhy....
CrossRef
Google Scholar
11.
Lejsek D, Leick P, Jochmann P, Grabner P, Schutting E. Analysis of mixture formation and combustion in H2 engines for passenger cars and light commercial vehicles. In: Heintzel A. (ed). Internationaler Motorenkongress 2022. Proceedings. Springer Vieweg. 2024
3-16. https://doi.org/10.1007/978-3-....
CrossRef
Google Scholar
12.
Marchenko A, Mishchenko M. Investigation of the parameters of combustion of petrol with the addition of hydrogen in a spark ignition engine in the modes of external speed characteristics. Internal Combustion Engines. 2024
1:52-60. https://doi.org/10.20998/0419-....
CrossRef
Google Scholar
13.
Mishchenko M. Defining innovative areas and prospects to develop the patenting of technological advances in the automotive power plant industry. Eastern-European Journal of Enterprise Technologies. 2024
13(127):92-102. https://doi.org/10.15587/1729-....
CrossRef
Google Scholar
14.
Osetrov O, Chuchumenko B. Mathematical modelling of the influence of internal combustion engine parameters on the dynamics of car acceleration. Internal Combustion Engines. 2021
2:3-10. https://doi.org/10.20998/0419-....
CrossRef
Google Scholar
15.
Osetrov O, Chuchumenko B, Polivyanchuk A, Korohodskyi V. Mathematical modeling and computational study of a passenger car dynamics during acceleration. 25th International Scientific Conference “Transport Means”. Part I. 2021
284-289. https://transportmeans.ktu.edu.
Google Scholar
16.
Osetrov A, Kokush V, Alyokhin D. Experimental study and mathematical modeling of mechanical losses in car engine. Bulletin of NTU "KhPI". Series: Transport Engineering. 2017
5(1227):59-63. https://repository.kpi.kharkov....
Google Scholar
17.
Osetrov О, Kravchenko S, Chuchumenko B. Justification of the parameters of the passenger car series hybrid power plan. Internal Combustion Engines. 2022
1:78-85. https://doi.org/10.20998/0419-....
CrossRef
Google Scholar
18.
Parczewski K, Romaniszyn KM, Wnęk H. A dynamic test of a vehicle in motion and exhaust gas emissions during alternative fuelling with gasoline and compressed natural gas (CNG). Combustion Engines. 2008
134(3):52-60. https://doi.org/10.19206/CE-11....
CrossRef
Google Scholar
19.
Purayil S, Al-Omari S, Elnajjar E. Experimental investigation of the effect of CO2 dilution on the performance and hydrogen knock limit of a hydrogen-gasoline dual fuel spark ignition engine. Int J Hydrogen Energ. 2024
68:410-427. https://doi.org/10.1016/j.ijhy....
CrossRef
Google Scholar
20.
Rusanov A, Solovey V, Zipunnikov M, Shevchenko A. Thermogas dynamics of physical and energy processes in alternative technologies (in Ukrainian). Monograph in 3 vol. 2018
1:336. http://monograph.com.ua/pctc/c...\.
Google Scholar
21.
Samoilenko D, Savchenko A, Kravchenko S. Improving the performance of diesel engines fueled with water-fuel emulsion. Combustion Engines. 2023
194(3):116-122. https://doi.org/10.19206/CE-16....
CrossRef
Google Scholar
22.
Shadidi B, Najafi G, Yusaf T. A review of hydrogen as a fuel in internal combustion engines. Energies. 2021
14(19):6209. https://doi.org/10.3390/en1419....
CrossRef
Google Scholar
23.
Szwaja S, Bhandary K, Naber J. Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine. Int J Hydrogen Energ. 2007
32:5076-5087. https://doi.org/10.1016/j.ijhy....
CrossRef
Google Scholar
24.
The Cabinet of Ministers of Ukraine Order of 30 May 2018 No. 430-r Kyiv ‘On Approval of the National Transport Strategy of Ukraine for the Period up to 2030’ (in Ukrainian). https://zakon.rada.gov.ua/laws....
Google Scholar
25.
Tutak W, Jamrozik A, Pyrc M, Sobiepański M. A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine/ Appl Therm Eng. 2017
117:155-163. https://doi.org/10.1016/j.appl....
CrossRef
Google Scholar
26.
White Paper of the European Commission – Plan for the Development of a Single European Transport Area – Towards a competitive and resource-efficient transport system. EU Publishing Centre in Luxembourg. 2011
28. https://brdo.com.ua/wp-content... (in Ukrainian).
Google Scholar