The Effect of the Dedicated Binder on the Properties of Cold Recycled Mixtures
(The Effect of the Dedicated Binder on the Properties of Cold Recycled Mixtures) (Wpływ spoiwa dedykowanego na właściwości recyklowanej mieszanki na zimno) Czasopismo: Inżynieria Mineralna - Journal of the Polish Mineral Engineering Society Tom: 2, Zeszyt: 1, Strony: 1-8 ISSN: 1640-4920 Opublikowano: 2024
Autorzy / Redaktorzy / Twórcy
Imię i nazwisko
Wydział
Katedra
Do oświadczenianr 3
Grupaprzynależności
Dyscyplinanaukowa
Procent udziału
Liczba punktów do oceny pracownika
Liczba punktów wg kryteriów ewaluacji
Marek Iwański
WBiA
Katedra Inżynierii Komunikacyjnej
Tak
zaliczony do "N"
Inżynieria lądowa, geodezja i transport
25
10.00
10.00
Grzegorz Mazurek
WBiA
Katedra Inżynierii Komunikacyjnej
Tak
zaliczony do "N"
Inżynieria lądowa, geodezja i transport
25
10.00
10.00
Mateusz Iwański
WBiA
Katedra Technologii i Trwałości Betonu *
Tak
zaliczony do "N"
Inżynieria lądowa, geodezja i transport
25
10.00
10.00
Przemysław Buczyński
WBiA
Katedra Inżynierii Komunikacyjnej
Tak
zaliczony do "N"
Inżynieria lądowa, geodezja i transport
25
10.00
10.00
Grupa MNiSW: Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A) Punkty MNiSW: 40
Abstract: The most important priority in the field of environmental protection is the implementation of the principle of closed-cycle materials management in construction. This problem also plays an important role in road construction. Due to the increasing traffic load of heavy vehicles and the impact of climatic factors, the road structure is subject to destructive processes that lead to the loss of its durability in time. Therefore, the roads periodically need to be modernized. Very often, it is necessary to carry out critical activities on the foundation to improve the load-bearing capacity of the pavement structure. As part of these works, large amounts of reclaimed asphalt and aggregate are obtained during milling of the lower structural layers of the surface. Applying the principle of closed-cycled material management, the most effective technology for using this material is its re-construction using deep cold recycling technology. This technology uses hydraulic binder and bituminous emulsion, and currently, more and more often, foamed bitumen. Due to the fact that the materials obtained from road structure layers are of very different quality, it is necessary to use a binder that will be dedicated specifically to the materials used (reclaimed asphalt pavement, reclaimed stone). In experiment Portland cement CEM I 32.5, hydrated lime and cement by-pass dust as a by-product obtained from cement plants were used. All components were mixed in various proportions controlled by experiment plan. The influence of a dedicated binder on absorption, dynamic modulus, phase angle in the specific temperature range and rutting resistance of a cold recycled mixture designed with reclaimed asphalt pavement, reclaimed aggregate and foamed asphalt was examined. The obtained test results were subjected to statistical analysis using the ANOVA test in order to determine the significance of the influence of individual components of the dedicated binder on the considered parameter of the cold recycled mixtures. It was determined that the dedicated binder used for the tested recycled asphalt mixture ensures its most favorable parameters when contains: 40% CEM I 35.2, 20% hydrated lime and 40% cement by-pass dust.
B I B L I O G R A F I A
1. D. Han, G. Liu, Y. Xi and Y. Zhao, Research on long-term strength formation and performance evolution with curing in cold recycled asphalt mixture, Case Studies in Construction Materials, 18, e01757, (2023), 2. S. Varma, A. Jamrah, M. E. Kutay, K.A. Korkmaz, S.W. Haider, and N. Buch, A framework based on engineering performance and sustainability to assess the use of new and recycled materials in pavements. Road Materials and Pavement Design, 20, 1844–1863 (2019) 3. Z. Li, P. Hao, H. Liu and J. Xu, Effect of cement on the strength and microcosmic characteristics of cold recycled mixtures using foamed asphalt, J. Clean. Prod. 230, 956–965, (2019). 4. M. M. Iwański, M. Linek, P. Nita, P. Piotrowska and E. Remisova, Assessment of Suitability of Reclaimed Asphalt Pavement Material for Use in Cement Concrete Pavemnets. Roads and Bridges - Drogi i Mosty 22, 63 – 80 (2023), 5. Asphalt Academy. Technical Guideline TG2: Bitumen Stabilised Materials. A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilized Materials (2nd ed.) (2009). 6. Y. Niazi and M. Jalili, Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion. Constr. Build. Mater. 23, 1338–1343, (2009). 7. I.S. Bessa, L.R. Almeida, K.L. Vasconcelos and L.L.B. Bernucci, Design of cold recycled mixes with asphalt emulsion and portland cement. Canadian Journal of Civil Engineering, 43 (2016) 8. K.J. Jenkins, Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen. PhD Dissertation, University of Stellenbosch (2000). 9. J. Lin, J. Hong and Y. Xiao, Dynamic characteristics of 100% cold recycled asphalt mixture using asphalt emulsion and cement. Journal of Cleaner Production, 156, 337–344 (2017). 10. Wirtgen Group. Cold Recycling Technology (First edition). Wirtgen GmbH, (2012) 11. J. Yan, F. Ni, M. Yang and J. Li, An experimental study on fatigue properties of emulsion and foam cold recycled mixes. Constr. Build. Mater. 24, 2151–2156, (2010). 12. R.B. Mallick and G. Hendrix, Use of foamed asphalt in recycling incinerator ash for construction of stabilized base course. Resources, Conservation and Recycling, 42, 239–248, (2004). 13. M. Saleh, Characterisation of foam bitumen quality and the mechanical properties of foam stabilised mixes. University of Canterbury Research Repository, (2006). https://ir.canterbury.ac.nz/bitstream/handle/10092/463/12603225_Main.pdf?sequence=3 14. J.M. Ramanujam and J.D. Jones, Characterization of foamed-bitumen stabilisation. International Journal of Pavement Engineering, 8, 111–122, (2007). 15. M.M. Iwański, Effect of Hydrated Lime on Indirect Tensile Stiffness Modulus of Asphalt Concrete Produced in Half-Warm Mix Technology. Materials, 14, 4731, (2020). 16. A. Kavussi and A. Modarres, Laboratory fatigue models for recycled mixes with bitumen emulsion and cement. Constr. Build. Mater. 24, 1920–1927, (2010). 17. G. Mazurek, M. Iwański, P. Buczyński and R. Horodecka, Influence of innovative three-element binder on permanent deformations in recycled mixtures with emulsion and foamed bitumen. Archives of Civil and Mechanical Engineering, 21, 55, (2021). 18. F. Xiao, S. Yao, J. Wang, X. Li and S. Amirkhanian, A literature review on cold recycling technology of asphalt pavement. Constr. Build. Mater. 180, 579–604, (2018). 19. P. Buczyński and M. Iwański, Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers. IOP Conference Series: Materials Science and Engineering, 245, 032042 (2017). 20. M. Iwański, G. Mazurek, P. Buczyński and J. Zapała-Sławeta, Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 266, 121231, (2020). 21. M. Iwański and A. Chomicz-Kowalska, (2014). Evaluation of the effect of using foamed bitumen and bitumen emulsion in cold recycling technology. In M. Losa & T. Papagiannakis (Eds.), Sustainability, Eco-efficiency, and Conservation in Transportation Infrastructure Asset Management, 69–76 (2014). CRC Press. 22. M.M. Iwański, A. Chomicz-Kowalska and K. Maciejewski, Impact of Additives on the Foamability of a Road Paving Bitumen. IOP Conference Series: Materials Science and Engineering, 603, 042040, (2019). 23. A. Woszuk, R. Panek, J. Madej, A. Zofka and W. Franus, Mesoporous silica material MCM-41: Novel additive for warm mix asphalts. Constr. Build. Mater. 183, 270–274 (2018). 24. Katalog Typowych Konstrukcji Nawierzchni Podatnych i Półsztywnych (Catalogue of typical flexible and semi-rigid pavements) (in Polish). (2014). GDDKiA, Warsaw, Poland. 25. S.Y. Abbasnejad and A. Modarres, Effect of setting accelerator additive on short- and long-term properties of cold recycled mixture containing bitumen emulsion–cement composites. Road Materials and Pavement Design, 21, 1932–1954, (2020). 26. C. Godenzoni, A. Graziani, E. Bocci and M. Bocci, The evolution of the mechanical behaviour of cold recycled mixtures stabilised with cement and bitumen: Field and laboratory study. Road Materials and Pavement Design, 19, 856–877, (2018). 27. L. Skotnicki, J. Kuźniewski and A. Szydło, Stiffness Identification of Foamed Asphalt Mixtures with Cement, Evaluated in Laboratory and In Situ in Road Pavements. Materials, 13, 1128, (2020). 28. B. Dołżycki, Polish experience with cold in-place recycling. IOP Conference Series: Materials Science and Engineering, 236, 012089 (2017). 29. P. Czapik, J. Zapała-Sławeta, Z. Owsiak and P. Stępień, Hydration of cement by-pass dust. Constr. Build. Mater. 231, 117139, (2020). 30. Z. Owsiak, P. Czapik and J. Zapała-Sławeta, Properties of a Three-Component Mineral Road Binder for Deep-Cold Recycling Technology. Materials, 13, 3585, (2020). 31. Z. Piasta and A. Lenarcik, Applications of statistical multi-criteria optimisation in design of concretes. Optimization Methods for Material Design of Cement-based Composites. E&FN Spon, London, New York (1998). 32. M .Iwański, G. Mazurek, A. Chomicz-Kowalska, P. Buczyński, M. Cholewińska, M.M. Iwański, K. Maciejewski and P. Ramiączek: Influence of mixed hydraulic binder on the properties of recycled asphalt mixtures with foamed bitumen. Roads and Bridges – Drogi i Mosty, 22, 1, 81–114, (2023). 33. H. Scheffe, The Simplex-Centroid Design for Experiments with Mixtures. Journal of the Royal Statistical Society. Series B (Methodological), 25, 235–263, (1963). JSTOR. 34. G.F. Piepel and J.A. Cornell, Mixture Experiment Approaches: Examples, Discussion, and Recommendations. Journal of Quality Technology, 26 (1994) 177–196. https://doi.org/10.1080/00224065.1994.11979525 35. R.D. Cook and C.J. Nachtrheim, A comparison of algorithms for constructing exact d-optimal designs, Technometrics, 22, 315-324, (1980). 36. D.C. Montgomery, Design and analysis of experiments (Eighth edition). John Wiley & Sons, Inc. (2013) 37. Ž.R. Lazić, Design of experiments in chemical engineering: a practical guide. Wiley-VCH, Weinheim, Germany, (2004). 38. 3NCHRP 9-29 PP 03. (n.d.). Determining the Dynamic Modulus and Flow Number for Hot-Mix Asphalt (HMA) Using the Simple Performance Test System. 39. T. Pellinen, A. Zofka, M. Marasteanu and N. Funk, Asphalt mixture stiffness predictive models: Asphalt Paving Technology 2007 AAPT. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 76, 575–625, (2007)