Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[134990] Artykuł:

Assessment of changes in environmental pollution by road noise using a scalar measure

(Ocena zmian zanieczyszczenia środowiska przez hałas drogowy za pomocą miary skalarnej)
Czasopismo: Archives of Environmental Protection   Tom: 50, Zeszyt: 4, Strony: 31–42
ISSN:  2083-4772
Opublikowano: Grudzień 2024
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Andrzej Bąkowski orcid logo WMiBMKatedra Mechaniki**Niespoza "N" jednostkiInżynieria mechaniczna33100.00.00  
Wojciech Batko Niespoza "N" jednostkiInżynieria mechaniczna33.00.00  
Leszek Radziszewski orcid logo WMiBMKatedra Mechaniki**Niespoza "N" jednostki3350.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

scalar noise parameter  road traffic profile  variability 



Abstract:

The article addresses the issue of assessing the impact of road rebuilding on traffic noise pollution. To
assess noise hazards, parameters expressed on the decibel scale were used, and a new measure was proposed - a
scalar reference that compares the sound level value to the recommended threshold. This measure is based on
Weber Fechner's law, which relates to human perception of changes in sound levels. It was derived through the
decibel algebra applied to measurement results and is called the “coefficient of exceedance of the recommended
sound level”. Its usefulness was verified by analyzing the results of measurements of traffic and noise parameters
before and two years after the reconstruction of a section of the national road in Kielce. An assessment was made
of traffic volume, vehicle speed, and road vehicle noise. The analysis evaluated the absolute values, variability and
uncertainty of results obtained for the entire year, Fridays and Sundays. Significant differences in traffic parameter
values were observed between the lanes entering and leaving the city on weekdays and weekends. The analysis
showed a 28% increase in traffic volume following the road reconstruction. The current measure, which compares
the difference in noise levels before and after the road reconstruction, indicates that while noise levels have
decreased, they still exceed the normative values. For the same parameters, the median coefficient of exceedance
decreased by approximately 17%, and the maximum coefficient of exceedance decreased by approximately 15%.
The diagnostic usefulness of the coefficient of exceedance was further assessed using noise simulations based on
the Cnossos-EU model. These simulations showed the high sensitivity of the proposed scalar noise measure to
changes in vehicle speed and traffic volume. The simulations also indicated that to meet the Polish noise normative
values, traffic volume would need to reduced by 50%, and the vehicle speed would need to be capped at 50 km/h.
Additionally, the simulations suggested that even more stringent traffic restrictions would be necessary to meet the
World Health Organization's noise recommendations.



B   I   B   L   I   O   G   R   A   F   I   A
1. Harantová, V., Hájnik, A., & Kalašová, A. (2020). Comparison of the flow rate and speed of vehicles on a representative road section before and after the implementation of measures in connection with COVID-19. Sustainability, 12(17), 7216.
2. Retallack, A. E., & Ostendorf, B. (2019). Current understanding of the effects of congestion on traffic accidents. International journal of environmental research and public health, 16(18), 3400.
3. Jandacka, D., Decky, M., & Durcanska, D. (2019, November). Traffic related pollutants and noise emissions in the vicinity of different types of urban crossroads. In IOP Conference Series: Materials Science and Engineering (Vol. 661, No. 1, p. 012152). IOP Publishing.
4. Khan, D., & Burdzik, R. (2023). Measurement and analysis of transport noise and vibration: A review of techniques, case studies, and future directions. Measurement, 113354.
5. Kayani, W. (2015). Shape-based classification and functional forecast of traffic flow profiles. Missouri University of Science and Technology.
6. Brambilla, G.
Benocci, R.
Potenza, A.
Zambon, G. Stabilization Time of Running Equivalent Level LAeq for Urban Road Traffic Noise. Appl. Sci. 2023, 13, 207. https:// doi.org/10.3390/app13010207
7. Noussan, M., Carioni, G., Sanvito, F. D., & Colombo, E. (2019). Urban mobility demand profiles: Time series for cars and bike-sharing use as a resource for transport and energy modeling. Data, 4(3), 108.
8. Wang, S., Yu, D., Ma, X., & Xing, X. (2018). Analyzing urban traffic demand distribution and the correlation between traffic flow and the built environment based on detector data and POIs. European Transport Research Review, 10, 1-17.
9. Starzomska, Aleksandra, Strużewska, Joanna, A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021), Archives of Environmental Protection, 2024, Archives of Environmental Protection Vol. 50 no. 2 pp. 75–84PL ISSN 2083-4772 DOI.10.24425/aep.2024.150554
10. Batko, W., Radziszewski, L., & Bąkowski, A. (2023, August). Limitations of decibel algebra in the study of environmental acoustic hazards. In AIP Conference Proceedings (Vol. 2949, No. 1). AIP Publishing, https://doi.org/10.1063/5.0166002
11. Przysucha, B., Pawlik, P., Stępień, B., & Surowiec, A. (2021). Impact of the noise indicators components correlation Ld, Le, Ln on the uncertainty of the long-term day–evening–night noise indicator Lden. Measurement, 179, 109399, https://doi.org/10.1016/j.measurement.2021.109399
12. Peters, R. (Ed.). (2020). Uncertainty in acoustics: measurement, prediction and assessment. CRC Press, https://doi.org/10.1201/9780429470622
13. Graziuso, G., Francavilla, A. B., Mancini, S., & Guarnaccia, C. (2022). Application of the Harmonica Index for noise assessment in different spatial contexts. In Journal of Physics: Conference Series (Vol. 2162, No. 1, p. 012006). IOP Publishing, http://dx.doi.org/10.1088/1742-6596/2162/1/012006
14. Wunderli, J. M., Pieren, R., Habermacher, M., Vienneau, D., Cajochen, C., Probst-Hensch, N., ... & Brink, M. (2016). Intermittency ratio: A metric reflecting short-term temporal variations of transportation noise exposure. Journal of exposure science & environmental epidemiology, 26(6), 575-585, https://doi.org/10.1038/jes.2015.56
15. Sahu, A. K., Nayak, S. K., Mohanty, C. R., & Pradhan, P. K. (2021). Traffic noise and its impact on wellness of the residents in sambalpur city–a critical analysis. Archives of Acoustics, 46(2), 353-363, DOI: 10.24425/aoa.2021.136588
16. Moroe, N., & Mabaso, P. (2022). Quantifying traffic noise pollution levels: a cross-sectional survey in South Africa. Scientific Reports, 12(1), 3454, https://doi.org/10.1038/s41598-022-07145-z
17. Smiraglia, M., Benocci, R., Zambon, G., & Roman, H. E. (2016). Predicting hourly traffic noise from traffic flow rate model: Underlying concepts for the dynamic project. Noise mapping, 3(1), https://doi.org/10.1515/noise-2016-0010
18. Yang, W., Cai, M., & Luo, P. (2020). The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles. Applied Acoustics, 160, 107128, https://doi.org/10.1016/j.apacoust.2019.107128
19. Upadhyay, S., Parida, M., & Kumar, B. (2023, February). Development of a Reference Energy Mean Emission Level Traffic Noise Models for Bituminous Pavement for Mid-Sized Cities in India. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 265, No. 5, pp. 2899-2906). Institute of Noise Control Engineering.
20. Bąkowski, A., & Radziszewski, L. (2023). Urban tidal flow noise-case study. Vibrations in Physical Systems, 34(1), http://dx.doi.org/10.21008/j.0860-6897.2023.1.19
21. Zhang, Yun and Li, Fu and Liu, Aihan and Yin, Jie and Xu, Liyan, Context-Expectation, Desensitization, and Synaesthesia: Comparing the Physical Acoustic Environment and Perceptual Soundscapes in Urban Public Spaces, 2023. http://dx.doi.org/10.2139/ssrn.4583809
22. Bąkowski A., Radziszewski L., Analysis of the Traffic Parameters on a Section in the City of the National Road during Several Years of Operation. Communications - Scientific Letters of the University of Zilina, 1/2022 vol. 24(1), A12-A25, DOI: 10.26552/com.C.2022.1.A12-A25
23. ISO 1996-1:2016 - Acoustics Description, measurement and assessment of environmental noise Part 1: Basic quantities and assessment procedures. https://www.iso.org/standard/59765.html.
24. European Union. Directive 2002/49/EC of the European Parliament and the Council of June 25 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Communities. 2002, 189, 12–25
25. Ranpise, R. B., & Tandel, B. N. (2022). Urban road traffic noise monitoring, mapping, modelling, and mitigation: A thematic review. Noise Mapping, 9(1), 48-66, https://doi.org/10.1515/noise-2022-0004
26. Meller, G., de Lourenço, W. M., de Melo, V. S. G., & de Campos Grigoletti, G. (2023). Use of noise prediction models for road noise mapping in locations that do not have a standardized model: a short systematic review. Environmental Monitoring and Assessment, 195(6), 740, https://doi.org/10.1007
27. Benocci R., Molteni A. , Cambiaghi M., Angelini F., Roman E., Zambon G., Reliability of Dynamap traffic noise prediction, Applied Acoustics 156 (2019) 142–150, https://doi.org/10.1016/j.apacoust.2019.07.004
28. World Health Organization. (2018). Environmental noise guidelines for the European region. World Health Organization. Regional Office for Europe.
29. Macioszek, E., & Kurek, A. (2021). Road traffic distribution on public holidays and workdays on selected road transport network elements. Transport Problems, 16.
30. Piotr Holnicki, Andrzej Kałuszko, Zbigniew Nahorski, Analysis of emission abatement scenario to improve urban air quality, Archives of Environmental Protection, Vol. 47 no. 2 pp. 103–114, 2021, PL ISSN 2083-4772 DOI 10.24425/aep.2021.137282