Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The purpose of this study was to attempt to develop a stochastic model that describes the operation of the stormwater overflow located in the stormwater sewerage system. The model built for this study makes it possible to simulate the annual volume of the stormwater discharge, the maximum volume of the overflow discharge in a precipitation event, and the share of the latter in the total amount of stormwater conveyed directly, without pre-treatment, to the receiver. The dependence obtained with the linear regression method was employed to identify the occurrence of stormwater discharge. The prediction of the synthetic annual rainfall series was made using the Monte Carlo method. This was performed based on the determined log-normal distribution, the parameters of which were specified using 13-year rainfall series. Additionally, simulation of the stormwater overflow operation was performed with the use of a calibrated hydrodynamic model of the catchment. The model was developed using the Storm Water Management Model (SWMM). The results of the hydrodynamic simulations of the volume and number of discharges were within the scope of the probabilistic solution, which confirms the applicative character of the method presented in this study, intended to assess the operation of stormwater overflow.
B I B L I O G R A F I A1. Yuan, Q.
Guerra, H.B.
Kim, Y. An investigation of the relationships between rainfall conditions and pollutant wash-off from the paved road. Water 2017, 9, 232. https://doi.org/10.3390/w9040232.
2. Szeląg, B.
Górski, J.
Bąk, Ł.
Górska, K. Modelling of stormwater quantity and quality on the example of urbanised catchment in Kielce. Ecol. Chem. Eng. A 2013, 20, 1305–1316. https://doi.org/10.2428/ecea.2013.20(11)11.
3. Llopart-Mascaró, A.
Farreny, R.
Gabarrell, X.
Rieradevall, J.
Gil, A.
Martínez, M.
Puertas, J.
Suárez, J.
Del Río, H.
Paraira, M. Storm tank against combined sewer overflow: Operation strategies to minimise discharges impact to receiving waters. Urban Water J. 2015, 12, 219–228. https://doi.org/10.1080/1573062X.2013.868499.
4. Sałata, A.
Bąk, Ł.
Dąbek, L.
Ozimina, E. Assessment of the degree of pollution of sediments from the rainstorm sewer system in the urbanized catchment. Desalin. Water Treat. 2016, 57, 1478–1489. https://doi.org/10.1080/19443994.2015.1033133.
5. Rauch, W.
Krejci, V.
Gujer, W. REBEKA—A software tool for planning urban drainage on the basis of predicted impacts on receiving waters. Urban Water 2002, 4, 355–361. https://doi.org/10.1016/S1462-0758(02)00021-3.
6. Lek, S.
Scardi, M.
Verdonschot, P.F.M.
Descy, J.P.
Park, Y.S. Modelling Community Structure in Freshwater Ecosystems
Spring-er-Verlag: Berlin Heidelberg/Germany, 2005.
7. Bąk, Ł.
Michalik, A.
Tekielak, T. Appraise of consequences of erosive processes occurring in the Skawa river sector. Environ Prot Eng 2011, 37, 83–92.
8. Bąk, Ł.
Michalik, A.
Tekielak, T. The relationship between bank erosion, local aggradation and sediment transport in a small Carpathian stream. Geomorphology 2013, 191, 51–63. https://doi.org/10.1016/j.geomorph.2013.03.002.
9. Vaes, G.
Berlamont, J. Emission predictions with a multi–linear reservoir model. Water Sci. Technol. 1999, 39, 9–16. https://doi.org/10.1016/S0273-1223(99)00003-7.
10. US EPA. Combined Sewer Overflows. Guidance for Nine Minimum Controls
EPA 832-B-95-003
U.S. Environmental Protection Agency, Office of Water: Washington, D.C., USA, 1995.
11. Gamerith, V.
Bertrand-Krajewski, J.L.
Mourad, M.
Rauch, W. Implications of long-term stormwater quality modelling for design of combined sewer infrastructure. Urban Water J. 2011, 8, 155–166.
12. Mantegazza, S.A.
Gallina, A.
Mambretti, S.
Camylyn, L. Designing CSO storage tanks in Italy: A comparison between normative criteria and dynamic modelling methods. Urban Water J. 2010, 7, 211–216. https://doi.org/10.1080/1573062X.2010.484499.
13. Zabel, T.
Milne, I.
Mckay, G. Approaches adopted by the European Union and selected Member States for the control of urban pollution. Urban Water 2001, 3, 25–32. https://doi.org/10.1016/S1462-0758(01)00019-X.
14. Rauch, W.
Henze, M.
Koncsos, L.
Reichert, P.
Shanahan, P.
SomlyóDy, L.
Vanrolleghem, P. River water quality modelling: I. state of the art. Water Sci. Technol. 1998, 38, 237–244. https://doi.org/10.1016/S0273-1223(98)00660-X.
15. US EPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms
EPA 821-R-02-012
U.S. Environmental Protection Agency, Office of Water: Washington, D.C., USA, 2002.
16. Schwoerbel, J.
Brendelberger, H. Einführung in die Limnologie. (Introduction to Limnology)
Spektrum Akademie Verlag: Hei-delberg, Germany, 2005. (In German).
17. ATV-A 128E
Standards for the Dimensioning and Design of Stormwater Structures in Combined Sewers. GFA: Hennef, Germany,1992.
18. Fenz, R. Gewässerschutz bei Entlastungsbauwerken der Mischkanalisation
Wiener Mitteilungen, Band 174. Institut für Wassergüte und Abfallwirtschaft, Technische Universität: Wien, Austria, 2002.
19. Dąbrowski, W. Estimating, computing and measuring multiplication factors for the working of storm overfalls. Gaz Woda Tech. Sanit. 2007, 11, 19–22. (In Polish).
20. Fidala-Szope, M.
Sawicka-Siarkiewicz, H.
Koczyk, A. Protection of Surface Waters Against Stormwater Discharges from Combined Sewers: Decision Guide
Instytut Ochrony Środowiska, Warszawa, 1999. (In Polish).
21. Vaes, G. The Influence of Rainfall and Model Simplification on Combined Sewer System Design
Ph.D. thesis, Catholic Uni-versity of Leuven, Leuven, Belgium, 1999.
22. Butz, J. Stoffstrombilanzen für Phosphor und Sechs Schwermetalle am Beispiel des Oberen Kraichbachs
Universität Frideri-ciana zu Karlsruhe (TH): Karlsruhe, Germany,2005.
23. Leandro, J.
Chen, A.
Djordjević, S.
Savić, D. Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. J. Hydraul. Eng. 2009, 135, 495–504. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037.
24. Coutu, S.
Del Giudice, D.
Rossi, L.
Barry, D.A. Parsimonious hydrological modeling of urban sewer and river catchments. J. Hydrol. 2012, 464–465, 477–484. https://doi.org/10.1016/j.jhydrol.2012.07.039.
25. Barco, J.
Wong, K.
Stenstrom, M. Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. J. Hydraul. Eng 2008, 134, 466–474. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466).
26. Kim, J.
Park, J.
Cha, S.
Kwon, S. Applying low-impact development techniques for improved water management in urban areas. Water 2024, 16, 2837. https://doi.org/10.3390/w16192837.
27. Ahmad, S.
Jia, H.
Ashraf, A.
Yin, D.
Chen, Z.
Ahmed, R.
Israr, M. A novel GIS-SWMM-ABM approach for flood risk as-sessment in data-scarce urban drainage systems. Water 2024, 16, 1464. https://doi.org/10.3390/w16111464.
28. Andrés-Doménech, I.
Múnera, J.C.
Francés, F.
Marco, J.B. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment. Hydrol. Earth Syst. Sci. 2010, 14, 2057–2072. https://doi.org/10.5194/hess-14-2057-2010.
29. Carleton, M.G. Comparison of overflows from separate and combined sewers—Quantity and quality. Water Sci. Technol. 1990, 22, 31–38.
30. Licznar, P. Stormwater reservoir dimensioning based on synthetic rainfall time series. Ochr. Srodowiska 2013, 35, 27–32. (In Polish).
31. Arbeitsblatt DWA-A 110
Hydraulische Dimensionierung und Leistungsnachweis von Abwasserleitungen und—kanälen. DWA: Hennef, Germany, 2006.
32. Kroll, S.
Blumensaat, F.
Dirckx, G.
Thoeye, C.
De Gueldre, G.
Van de Steene, B.
Tränckner, J. Assessment of CSO activity using simple volume balancing. In Proceedings of the 6th International Conference Novatech, Lyon, France,25-28 June 2007.
33. Cambez, M.J.
Pinho, J.
David, L.M. Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31 Aug – 5 Sept 2008.
34. Kiczko, A.
Romanowicz, R.J.
Osuch, M.
Karamuz, E. Maximising the usefulness of flood risk assessment for the River Vistula in Warsaw. Nat. Hazard Earth Sys. 2013, 13, 3443–3455. https://doi.org/10.5194/nhess-13-3443-2013.
35. Kleidorfer, M.
Deletic, A.
Fletcher, T.D.
Rauch, W. Impact of input data uncertainties on urban stormwater model parameters. Water Sci. Technol. 2009, 60, 1545–1554. https://doi.org/10.2166/wst.2009.493.
36. Korving, H.
Van Gelder, P.
Van Noortwijk, J.
Clemens, F. Influence of model parameter uncertainties on decision-making for sewer system management. In Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1–5 July 2002.
37. Thorndahl, S.
Willems, P. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series. Water Res. 2008, 42, 455–466. https://doi.org/10.1016/j.watres.2007.07.038.
38. Thorndahl, S. Stochastic long term modelling of a drainage system with estimation of return period uncertainty. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31 Aug – 5 Sept 2008.
39. Bąk, Ł.
Górski, J.
Górska, K.
Szeląg, B. Suspended solids and heavy metals content of selected rainwater waves in an urban catchment area: A case study. Ochr. Środ 2012, 34, 49–52. (In Polish).
40. Fu, G.
Butler, D.
Khu, S.T.
Sun, S. Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory. Water Resour. Res. 2011, 47, 1–13. https://doi.org/10.1029/2009WR008944.
41. Fu, G.
Butler, D. Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 2014, 510, 49–58. https://doi.org/10.1016/j.jhydrol.2013.12.006.
42. Fontanazza, C.M.
Freni, G.
La Loggia, G.
Notaro, V. Uncertainty evaluation of design rainfall for urban flood risk analysis. Water Sci. Technol. 2011, 63, 2641–2650.
43. Balistrocchi, M.
Bacchi, B. Modelling the statistical dependence of rainfall event variables through copula functions. Hydrol. Earth Syst. Sci. 2011, 15, 1959–1977. https://doi.org/10.5194/hess-15-1959-2011.
44. Arbeitsblatt DWA-A 118
Hydraulische Bemessung und Nachweis von Entwässerungssystemen. DWA: Hennef, Germany, 2006.
45. Kotowski, A.
Dancewicz, A.
Kaźmierczak, B. Accuracy of measurements of precipitation amount using standard and tipping bucket pluviographs in comparison to Hellmann rain gauges. Environ. Prot. Eng. 2011, 37, 23–34.
46. Suligowski, R. Struktura Czasowa i Przestrzenna Opadów Atmosferycznych w Polsce. Próba Regionalizacji
Prace Instytutu Geografii Akademii Świętokrzyskiej w Kielcach: Kielce, Poland, 2004.
47. Szeląg, B.
Kiczko, A.
Studzinski, J.
Dąbek, L. Hydrodynamic and probabilistic modelling of storm overflow discharges. J. Hydroinform. 2018, 20, 1100–1110. https://doi.org/10.2166/hydro.2018.005.
48. Szeląg, B.
Suligowski, R.
Studzinski, J.
De Paola, F. Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: A probabilistic approach. Hydrol. Earth Syst. Sci. 2020, 24, 595–614. https://doi.org/10.5194/hess-24-595-2020.
49. Butech Sp. z o.o. Construction of Stormwater Treatment on the Collector Si9, Building Project
Manuscript, Kielce, Poland, 2003. (In Polish).
50. Szeląg, B.
Bąk, Ł. Probabilistic model for the annual number of storm overflow discharges in a stormwater drainage system. Urban Water J. 2017, 14, 604–611. https://doi.org/10.1080/1573062X.2016.1223860.
51. Huber, W.C.
Dickinson, R.E. Storm Water Management Model
Version 4: User´s Manual
EPA/600/3-88/001a
U.S. Environmental Protection Agency, Office of Research and Development: Athens, GA, USA, 1988.
52. Rossman, L.A. Storm Water Management Model
User’s Manual. Version 5.0. EPA/600/R-05/040
U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Office of Research and Development: Cincinnati, OH, USA, 2010.
53. Fu, G.
Kapelan, Z. Flood analysis of urban drainage systems: Probabilistic dependence structure of rainfall characteristics and fuzzy model parameters. J. Hydroinform. 2013, 15, 687–699. https://doi.org/10.2166/HYDRO.2012.160.
54. Brzezińska, A.
Zawilski, M.
Sakson, G. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring. Environ Monit Assess, 2016, 188: 502. https://doi.org/10.1007/s10661-016-5461-6
Assessment of combined sewer overflow performance on the basis of areal rainfall monitoring. In Urban Drainage in the Context of Integrated Urban Water Management: A Bridge between Developed and Developing Countries, Proceedings of the 13th International Conference on Urban Drainage
Sarawak, Malaysia, 712 September 2014.
55. Yu, Y.
Kojima, K.
An, K.
Furumai, H. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo. Water Sci. Technol. 2013, 68, 544–551. https://doi.org/10.2166/wst.2013.253.
56. Muhaisen, O.S.
Osorio, F.
García, P.A. Two-copula based simulation for detention basin design. Civ. Eng. Environ. Syst. 2009, 26, 355–366. https://doi.org/10.1080/10286600802196387.
57. Osorio, F.
Muhaisen, O.
García, P.A. Copula-based simulation for the estimation of optimal volume for a detention basin. J. Hydrol. Eng. 2009, 14, 1378–1382. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000124.