Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[133580] Artykuł:

Laser assembly of CeO2 nanobrushes and their resistive switching performance

Czasopismo: Journal of Alloys and Compounds   Tom: 1009
ISSN:  0925-8388
Opublikowano: Pażdziernik 2024
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Ling Wu Niespoza "N" jednostki014.00.00  
Lei Ran Niespoza "N" jednostki012.00.00  
Yifeng Lv Niespoza "N" jednostki012.00.00  
Tingbin Wang Niespoza "N" jednostki012.00.00  
Shuowen Zhang Niespoza "N" jednostki012.00.00  
Szymon Tofil orcid logo WMiBMKatedra Inżynierii Eksploatacji i Przemysłowych Systemów Laserowych*Takzaliczony do "N"Inżynieria mechaniczna12100.00100.00  
Lisha Fan Niespoza "N" jednostki014.00.00  
Jianhua Yao Niespoza "N" jednostki012.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

CeO2  Nanobrushes  Pulsed laser epitaxy  Resistive switching  Conduction mechanism 



Abstract:

Memristors in a metal/oxide/metal configuration emerge as an advanced non-volatile information storage technology due to their high operating speed and low power consumption. Understanding the role of the microstructure of the active oxide layer in its resistive switching (RS) performance is scientifically important for revealing the conduction mechanism of oxides, and technically critical for the development of high-performance memristors. Here, self-assembly of vertically aligned CeO2 nanobrushes, a typical RS material, is demonstrated in pulsed laser epitaxy. The growth map of CeO2 is fully explored, and optimized growth conditions for CeO2 nanobrushes are established. Microstructure and crystallinity characterizations reveal the single-crystalline epitaxy nature of CeO2 nanobrushes. A nanobrush memristor exhibits a threshold switching feature with an On/Off ratio of 50, as 16 times high as a thin-film memristor, and excellent endurance of up to 500 cycles and retention time of up to 104 seconds. Theoretical fitting of the I-V curves of the thin-film and nanobrush memristors show interfacial switching in the thin-film memristor and filamentary switching in the nanobrush memristor. The distinct RS mechanisms between thin films and nanobrushes suggest the fundamental role of the structural design of active oxide layers in the RS performance of oxide-based memristors.