Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[133390] Artykuł:

Composite Materials Used for Dental Fillings

Czasopismo: Materials   Tom: 17, Zeszyt: 19
ISSN:  1996-1944
Opublikowano: Pażdziernik 2024
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Joanna Wysokińska-Miszczuk Niespoza "N" jednostkiNauki medyczne25.00.00  
Katarzyna Piotrowska orcid logo WMiBMKatedra Eksploatacji, Technologii Laserowych i NanotechnologiiTakzaliczony do "N"Inżynieria mechaniczna2570.0070.00  
Michał Paulo Niespoza "N" jednostkiNauki medyczne25.00.00  
Monika Madej orcid logo WMiBMKatedra Eksploatacji, Technologii Laserowych i NanotechnologiiTakzaliczony do "N"Inżynieria mechaniczna2570.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

dental composites  ormocer resin  surface texture  hardness  wettability  friction  wear 



Abstract:

This article explores the properties of composite materials employed in dental fillings. A traditional nano-hybrid composite containing nanofiller particles exceeding 82% by weight served as a benchmark. The remaining samples were fabricated from ormocer resin, maintaining an identical nanofiller content of 84%. In all specimens, the nanoparticles were dispersed randomly within the matrix. This study presents findings from investigations into surface geometry, hardness, wettability, and tribological behavior. The microscopic observations revealed that ormocer-based samples exhibited greater surface roughness than those composed of the traditional composite. Hardness testing indicated that both ceramic addition and sample preparation significantly influenced mechanical properties. Ceramic-enhanced samples demonstrated superior hardness, surpassing the reference composite by 30% and 43%, respectively. Contact angle measurements revealed hydrophilic characteristics in the classic composite, contrasting with the hydrophobic nature of ceramic-containing samples. Tribological evaluations revealed the superiority of the classic composite in terms of friction coefficients and volumetric wear compared to ormocer-based materials



B   I   B   L   I   O   G   R   A   F   I   A
1. Nemeth, K.D. Haluszka, D. Seress, L. Lovasz, B.V. Szalma, J. Lempel, E. Effect of Air-Polishing and Different Post-Polishing Methods on Surface Roughness of Nanofill and Microhybrid Resin Composite. Polimers 2022, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
2. Siejka-Kulczyk, J. Mystkowska, J. Lewandowska, M. Dąbrowski, J.R. Kurzydłowski, K.J. The influence of nano-silica on the wear resistance of ceramic-polymer composites intended for dental fillings. Solid State Phenom. 2009, 151, 135–138. [Google Scholar] [CrossRef]
3. Mandikos, M.N. McGivney, G.P. Davis, E. Bush, P.J. Carter, M. A comparison of the wear resistance and hardness of indirect composite resins. J. Prosthet. Dent. 2001, 85, 386–395. [Google Scholar] [CrossRef] [PubMed]
4. Wilżak, A. Nowak, J. Szram, O. Sokołowski, J. Łukomska-Szymańska, M. Dental composites—The chemical structure and properties of components. Literature review. Stomatol. Estet. 2014, 75–83. [Google Scholar]
5. Kleczewska, J. Bielinski, D. Ranganathan, N. Sokołowski, J. Characterization of Light-Cured Dental Composites. In Materials Characterization: Modern Methods and Applications Jenny Stanford Publishing: London, UK, 2015
pp. 117–148. [Google Scholar]
6. Mousavinasab, S.M. Effects of filler content on mechanical and optical properties of dental composite resin. In Metal, Ceramic and Polymeric Composites for Various Uses Scitus Academics LLC.: Wilmington, DE, USA, 2011. [Google Scholar]
7. Khurshid, Z. Zafar, M. Qasim, S. Shahab, S. Naseem, M. Abu Reqaiba, A. Advances in nanotechnology for restorative dentistry. Materials 2015, 8, 717–731. [Google Scholar] [CrossRef]
8. Zafar, M.S. Khurshid, Z. Najeeb, S. Zohaib, S. Rehman, I.U. Therapeutic applications of nanotechnology in dentistry. In Nanostructures for Oral Medicine Elsevier: Amsterdam, The Netherlands, 2017 pp. 833–862. [Google Scholar]
9. Abuelenain, D.A. Neel, E.A.A. Surface and mechanical properties of different dental composites. Austin J. Dent. 2015, 2, 1019. [Google Scholar]
10. Halvorson, R.H. Erickson, R.L. Davidson, C.L. The effect of filler and silane content on conversion of resin-based composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
11. Alqahtani, A.S. Sulimany, A.M. Alayad, A.S. Abdulaziz, A.S. Omar, A.B. Evaluation of the Shear Bond Strength of Four Bioceramic Materials with Different Restorative Materials and Timings. Materials 2022, 15, 4668. [Google Scholar] [CrossRef]
12. Szafran, M. Bobryk, E. Szczęsna, B. Jałbrzykowski, M. Wpływ dodatku nanowypełniacza na właściwości mechaniczne i tribologiczne kompozytów ceramiczno-polimerowych do zastosowań stomatologicznych. Kompozyty 2006, 6, 83–87. [Google Scholar]
13. Mystkowska, J. Dąbrowski, J.R. Tribological characteristics of the kinematics couple: Tooth—Composite material for permanent dental fillings. Eksploat. I Niezawodn. 2010, 3, 4–9. [Google Scholar]
14. Altaie, A. Bubb, N.L. Franklin, P. Dowling, A.H. Fleming, G.J. Wood, D.J. An approach to understanding tribological behaviour of dental composites through volumetric wear loss and wear mechanism determination beyond material ranking. J. Dent. 2017, 59, 41–47. [Google Scholar] [CrossRef] [PubMed]
15. Tricco, A.C. Lillie, E. Zarin, W. O’Brien, K.K. Colquhoun, H. Levac, D. Moher, D. Peters, M.D.J. Horsley, T. Weeks, L. et al. Research and reporting methods PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
16. Akhtar, K. Pervez, C. Zubair, N. Khalid, H. Calcium hydroxyapatite nanoparticles as a reinforcement filler in dental resin nanocomposite. J. Mater. Sci. Mater. Med. 2021, 32, 129. [Google Scholar] [CrossRef] [PubMed]
17. Vargas, S. Estevez, M. Hernandez, A. Laiz, J.C. Brostow, W. Hagg Lobland, H.E.Rodriguez, J.R. Hydroxyapatite based hybrid dental materials with controlled porosity and improved tribological and mechanical properties. Mater. Res. Innov. 2013, 17, 154–160. [Google Scholar] [CrossRef]
18. Mystkowska, J. Dąbrowski, J.R. The influence of selected powder fillers on the tribological properties of composite materials for dental fillings. SSP 2009, 144, 33–38. [Google Scholar] [CrossRef]
19. Antunes, P.V. Ramalho, A. Influence of pH values and aging time on the tribological behaviour of posterior restorative materials. Wear 2009, 267, 718–725. [Google Scholar] [CrossRef]
20. Suryawanshi, A.S. Behera, N. Tribological behavior of dental restorative composites in chewable tobacco environment. Proc. Inst. Mech. Eng. H. 2020, 234, 1106–1112. [Google Scholar] [CrossRef]
21. Yadav, R. Meena, A. Comparative investigation of tribological behavior of hybrid dental restorative composite materials. Ceram. Int. 2021, 48, 6698–6706. [Google Scholar] [CrossRef]
22. Ozdal, M. Gurkok, S. Recent advances in nanoparticles as antibacterial agent. Admet Dmpk 2022, 10, 115–129. [Google Scholar] [CrossRef]
23. Hasan, A. Morshed, M. Memic, A. Hassan, S. Webster, T.J. El-Sayed Marei, H. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018, 13, 5637–5655. [Google Scholar [CrossRef]
24. Cheng, Z. Li, M. Dey, R. Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 4, 85. [Google Scholar] [CrossRef] [PubMed]
25. Han, X. Xu, K. Taratula, O. Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef] [PubMed]
26. Sreenivasalu, P.K.P. Dora, C.P. Swami, R. Jasthi, V.C. Shiroorkar, P.N. Nagaraja, S. Asdaq, S.M.B. Anwer, M.K. Nanomaterials in Dentistry: Current Applications and Future Scope. Nanomaterials 2022, 12, 1676. [Google Scholar] [CrossRef] [PubMed]
27. Singh, R.P. Choi, J.W. Tiwari, A. Pandey, A.C. Biomedical Materials and Diagnostic Devices Tiwari, A., Ramalingam, M., Kobayashi, H., Turner, A.P.F., Eds. Scribener Publ.: Beverly, MA, USA
Wiley & Sons Inc.: Hoboken, NJ, USA, 2012 Volume 7, pp. 217–262. [Google Scholar]
28. TOPSEIKO. Available online: https://top-seiko.com/pl/works/material-cat/ceramics/zirconia/ (accessed on 20 September 2024).
29. PN-EN ISO 10993-15:2023-10 Biological Evaluation of Medical Devices—Part 15: Identification and Quantification of Degradation Products of Metals and Alloys. International Organization for Standardization: Geneva, Switzerland, 2023.
30. Bociong, K. Szczesio, A. Krasowski, M. Sokolowski, J. The influence of filler amount on selected properties of new experimentalresin dental composite. Open Chem. 2018, 16, 905–911. [Google Scholar] [CrossRef]
31. Bucuta, S. Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral. Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef]
32. Moussa, D.G. Fok, A. Aparicio, C. Hydrophobic and Antimicrobial Dentin: A Peptide-based 2-tier Protective System for Dental Resin Composite Restorations. Acta Biomater. 2019, 88, 251–265. [Google Scholar] [CrossRef]
33. Malacarne, J. Carvalho, R.M. de Goes, M.F. Svizero, N. Pashley, D.H. Tay, F.R. Yiu, C.K. de Oliveira Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef]
34. Sideridou, I.D. Karabela, M.M. Sorption of water, ethanol or ethanol/water solutions by light-cured dental dimethacrylate resins. Dent. Mater. 2011, 27, 1003–1010. [Google Scholar] [CrossRef]
35. Sideridou, I. Tserki, V. Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
36. Oysaed, H. Ruyter, I.E. Water sorption and filler characteristics of composites for use in posterior teeth. J. Dent. Res. 1986, 65, 1315–1318. [Google Scholar] [CrossRef]
37. Teughles, W. Van Assche, N. Sliepen, I. Quirynen, M. Effect of material characteristics and/or surface topography on biofilm develpoment. Clin. Oral. Imp. Res. 2006, 17, 68–81. [Google Scholar] [CrossRef] [PubMed]
38. Aykent, F. Aykent, F. Yondem, I. Ozyesil, A.G. Gunal, S.K. Avunduk, M.C. Ozkan, S. Effect of different finishing techniques for restorative materials on surface roughness and bacterial Adhesion. J. Prosthet. Dent. 2010, 103, 221–227. [Google Scholar] [CrossRef] [PubMed]