Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: This article examines the impact of meteorological conditions represented by ambient temperature, ambient humidity, wind speed, and daily precipitation sum on the reliability of low-voltage cable lines. Cable line reliability is crucial to the stability and safety of power systems. Failure of cable lines can lead to power outages. This can cause serious economic and social consequences, as well as threaten human safety, especially in the public sector and critical infrastructure. In addition, any interruption of cable lines generates costs related to repairs, operational losses, and possible contractual penalties. This is why it is so important to investigate the causes of power equipment failures. Many power system failures are caused by weather factors. The main purpose of this article is to quantify the actual impact of weather conditions on the performance and reliability of power equipment in distribution networks. Reliability indicators (failure rate, failure duration, restoration rate, and failure coefficient) for low-voltage cable lines were calculated as a function of weather conditions. Empirical values of the indicators were determined based on many years of observations of power lines operating in the Polish power system. An analysis of the conformity of their empirical distribution with the assumed theoretical model was also conducted. By quantifying the impact of specific weather factors on the operation of power equipment, it becomes possible to identify the ranges in which failures are most likely.
B I B L I O G R A F I A1. Dołęga, W. Efektywna transformacja krajowej sieci elektroenergetycznej. In Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. Zagadnienia Surowców Energetycznych i Energii w Gospodarce Krajowej. Bezpieczeństwo Energetyczne Polski i UE w Świetle Obecnej Sytuacji Gospodarczej Świata Stala-Szlugaj, K., Grudziński, Z., Eds. Wydawnictwo IGSMiE PAN: Kraków, Poland, 2024 Volume 1, pp. 9–20.
2. Dołęga, W. Bezpieczeństwo pracy krajowych sieci dystrybucyjnych. Przegląd Elektrotechniczny 2020, 3, 21–24.
3. Agencja Rynku Energii, S.A. Statystyka Elektroenergetyki Polskiej 2000–2021 Ministerstwo Klimatu i Środowiska Agencja Rynku Energii S.A.: Warszawa, Poland, 2001–2022.
4. Wnukowska, B. Czynniki wpływające na niezawodność pracy sieci dystrybucyjnych. Zesz. Nauk. Coll. Witelona 2023, 48, 11–26.
5. Banasik, K. Chojnacki, A.Ł. Economic effects of non-delivery of electricity to municipal and household consumers. Przegląd Elektrotechniczny 2018, 3, 181–187.
6. Entress, R.M. Stevens, K.A. Public values failure associated with Hurricane Ian power outages. Front. Sustain. Energy Policy 2023, 2, 1304673.
7. Rudnick, H. Impact of natural disasters on electricity supply. IEEE Power Energy Mag. 2011, 9, 22–26.
8. Yan, Q. Dokic, T. Kezunovic, M. Predicting impact of weather caused blackouts on electricity customers based on risk assessment. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–26 July 2016 pp. 1–5.
9. Rozporządzenie Ministra Klimatu i Środowiska z dnia 27 września 2022 r. Zmieniające Rozporządzenie w Sprawie Szczegółowych Warunków Funkcjonowania Systemu Elektroenergetycznego. Available online: https://reference.globalspec.com/standard/3795734/p1366-d7-jan-2012 (accessed on 28 June 2024).
10. Dubey, A. Preparing the Power Grid for Extreme Weather Events: Resilience Modeling and Optimization. In Women in Engineering and Science Tietjen, J.S., Ilic, M.D., Bertling Tjernberg, L., Schulz, N.N., Eds. Women in Power Springer: Cham, Switzerland, 2023.
11. Sozański, J. Niezawodność i Jakość Pracy Systemu Elektroenergetycznego WNT: Warszawa, Polska, 1990.
12. Ji, C. Wei, Y. Poor, H.V. Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics. Proc. IEEE 2017, 105, 1354–1366.
13. Brown, R.E. Electric Power Distribution Reliability Marcel Dekker, Inc.: New York, NY, USA, 2002.
14. IEEE Draft Guide for Electric Power Distribution Reliability Indices. In IEEE P1366/D7, January 2012 IEEE: Piscataway, NJ, USA, 6 March 2012 pp. 1–40.
15. Mukherjee, S. Nateghi, R. Hastak, M. A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S. Reliab. Eng. Syst. Saf. 2018, 175, 283–305.
16. Kankanala, P. Das, S. Pahwa, A. Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems. IEEE Trans. Power Syst. 2014, 29, 359–367.
17. Kabir, E. Guikema, S.D. Quiring, S.M. Power outage prediction using data streams: An adaptive ensemble learning approach with a feature- and performance-based weighting mechanism. Risk Anal. 2023, 44, 686–704.
18. Cerruti, B.J. Decker, S.G. A Statistical Forecast Model of Weather-Related Damage to a Major Electric Utility. J. Appl. Meteor. Climatol. 2011, 51, 191–204.
19. Złotecka, D. Wpływ ekstremalnych zjawisk atmosferycznych na system elektroenergetyczny. Electr. Eng. 2018, 94, 87–98.
20. Chojnacki, A.Ł. Assessment of the Risk of Damage to 110 kV Overhead Lines Due to Wind. Energies 2021, 14, 556.
21. Hanif, S. Mukherjee, M. Poudel, S. Yu, M.G. Jinsiwale, R.A. Hardy, T.D. Reeve, H.M. Analyzing at-scale distribution grid response to extreme temperatures. Appl. Energy 2023, 337, 120886.
22. Potts, J. Tiedmann, H.R. Syephens, K.K. Faust, K.M. Castellanos, S. Enhancing power system resilience to extreme weather events: A qualitative assessment of winter storm Uri. Int. J. Disaster Risk Reduct. 2024, 103, 104309.
23. Sroka, K. Złotecka, D. The risk of large blackout failures in power systems. Arch. Electr. Eng. 2019, 68, 411–426.
24. Bernstein, A. Bienstock, D. Hay, D. Uzunoglu, M. Zussman, G. Power grid vulnerability to geographically correlated failures—Analysis and control implications. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014 pp. 2634–2642.
25. Banasik, K. Chojnacki, A.Ł. Gębczyk, K. Grąkowski, Ł. Influence of wind speed on the reliability of low-voltage overhead power lines. In Proceeding of the 2019 Progress in Applied Electrical Engineering (PAEE)—IEEE, Koscielisko, Poland, 17–21 June 2019 pp. 1–5.
26. Zhou, Y. Pahwa, A. Yang, S.S. Modeling weather-related failures of overhead distribution lines. IEEE Trans. Power Syst. 2006, 21, 1683–1690.
27. Mitchell, J.W. Power line failures and catastrophic wildfires under extreme weather conditions. Eng. Fail. Anal. 2013, 35, 726–735.
28. Dzobo, O. Tazvinga, H. Impact of Weather Conditions on Line Ampacity of Overhead Transmission Lines. In Proceedings of the 9th International Conference on Power and Energy Systems (ICPES), Perth, WA, Australia, 21–22 December 2019 pp. 1–5.
29. Kolev, V.G. Sulakov, S.I. The weather impact on the overhead line losses. In Proceedings of the 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–3 June 2017 pp. 119–123.
30. Goncalves, A. Marques, M.C. Loureiro, S. Nieto, R. Liberato, M.L.R. Disruption risk analysis of the overhead power lines in Portugal. Energy 2023, 263 (Pt A), 125583.
31. Hou, G. Muraleetharan, K.K. Panchalogaranjan, V. Moses, P. Javid, A. Al-Dakheeli, H. Bulut, R. Campos, R. Harvey, P.S. Miller, G. et al. Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms. Reliab. Eng. Syst. Saf. 2023, 230, 108964.
32. Banasik, K. Influence of Ambient Temperature on the Reliability of Overhead Power Lines with Bare Conductors. Energies 2024, 17, 3062.
33. Chojnacki, A.Ł. Modele niezawodnościowe izolowanych linii napowietrznych SN. Elektro Info 2016, 6, 69–73.
34. Chojnacki, A.Ł. Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi. Elektro Info 2016, 5, 20–24.
35. Naigen, L. Yong, Y.Z. Heheng, L. Xiaojun, P. Application Research on Online Power Cable Temperature Detection via Fiber Optics. Appl. Math. Nonlinear Sci. 2024, 9, 1–12.
36. Carer, P. Briend, C. Weather Impact on Components Reliability: A Model for MV Electrical Networks. In Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems, Rincon, PR, USA, 24–26 June 2008 pp. 1–7.
37. Van Dinter, R. Rieken, S. Leduc, P. Netten, G. Tekinerdogan, B. Catal, C. Forecasting Partial Discharges of Cable Joints using Weather data. In Proceedings of the IEEE Conference on Artificial Intelligence (CAI), Santa Clara, CA, USA, 5–6 June 2023 pp. 30–31.
38. Sturchio, A. Fioriti, G. Pompili, M. Cauzillo, B. Failure rates reduction in SmartGrid MV underground distribution cables: Influence of temperaturę. In Proceedings of the AEIT Annual Conference—From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), Trieste, Italy, 1 September 2014 pp. 1–6.
39. Chojnacki, A.Ł. Porównanie wskaźników i właściwości niezawodnościowych przyłączy napowietrznych i kablowych nN. Pr. Inst. Elektrotechniki 2015, 250, 93–107.
40. Chojnacki, A.Ł. Chojnacka, K.J. Niezawodność Elektroenergetycznych Sieci Dystrybucyjnych Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland, 2018.
41. Gkika, A.V. Zacharis, E.A. Lekkas, E.L. Lizios, S.G. Parcharidis, I.A. Climate Change Adaptation Management Pathway for Overhead Electricity Pole Systems of Distribution Networks. In Proceedings of the 2nd World Conference on Sustainability, Energy and Environment, Berlin, Germany, 9–11 December 2022 pp. 49–83.
42. Wang, Y. Chen, C. Wang, J. Baldick, R. Research on Resilience of Power Systems Under Natural Disasters—A Review. IEEE Trans. Power Syst. 2016, 31, 1604–1613.
43. Panteli, M. Mancarella, P. Modeling and Evaluating the Resilience of Critical Electrical Power Infrastructure to Extreme Weather Events. IEEE Syst. J. 2017, 11, 1733–1742.
44. Lee, S.M. Chinthavali, S. Bhusal, N. Stenvig, N. Tabassum, A. Kuruganti, T. Quantifying the Power System Resilience of the US Power Grid Through Weather and Power Outage Data Mapping. IEEE Access 2024, 12, 5237–5255.
45. Dehghani, F. Mohammadi, M. Karimi, M. Age-dependent resilience assessment and quantification of distribution systems under extreme weather events. Int. J. Electr. Power Energy Syst. 2023, 150, 109089.
46. Atrigna, M. Buonanno, A. Carli, R. Cavone, G. Scarabaggio, P. Valenti, M. Dotoli, M. A Machine Learning Approach to Fault Prediction of Power Distribution Grids Under Heatwaves. IEEE Trans. Ind. Appl. 2023, 59, 4835–4845.
47. Coleman, N. Esmalian, A. Lee, C. Gonzales, E. Koirala, P. Mostafavi, A. Energy inequality in climate hazards: Empirical evidence of social and spatial disparities in manager and hazard-induced power outages. Sustain. Cities Soc. 2023, 92, 104491.
48. EN 50160:2023-10 Supply Voltage Parameters in Public Power Grids. Polish Committee for Standardization: Warsaw, Poland, 2023.
49. PN-76/E-05125 Power and Signalling Cable Lines. Design and Construction. Polish Committee for Standardization: Warsaw, Poland, 2004.
50. Kujszczyk, S. Elektroenergetyczne Sieci Rozdzielcze Tom 1 Wydawnictwo Naukowe PWN: Warszawa Polska, 1994.
51. Stępień, J.C. Metody Analizy i Oceny Niezawodności Kablowych Układów Zasilających Średnich Napięć Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Polska, 2011.
52. Bartáková, B. Rychtera, M. Tropikalizacja Urządzeń Elektrycznych Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 1960.