Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[131690] Artykuł:

Characterisation of TiCN Coatings for Biomedical Applications

Czasopismo: Coatings   Tom: 14 (6), Zeszyt: 775
ISSN:  2079-6412
Opublikowano: Czerwiec 2024
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Monika Madej orcid logo WMiBMKatedra Eksploatacji, Technologii Laserowych i NanotechnologiiTakzaliczony do "N"Inżynieria mechaniczna5050.0050.00  
Katarzyna Piotrowska orcid logo WMiBMKatedra Eksploatacji, Technologii Laserowych i NanotechnologiiTakzaliczony do "N"Inżynieria mechaniczna5050.0050.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

TiCN  adhesion  instrumental hardness  surface texture  friction  wear 



Abstract:

This study aims to characterise TiCN coatings deposited on Ti6Al4V by physical vapour deposition. Findings on surface morphology, geometric structure, adhesion, instrumental hardness, and tribology are presented. Microscopic examination revealed a uniform coating with a thickness of about 1.5 µm and roughness (Sq) equal to 0.13 µm. Mechanical tests showed that the coating deposition increased the hardness of the Ti6Al4V alloy by about 75%. The artificial saliva solution used in the tribological tests reduced the coefficient of friction and the volumetric wear of the tested friction pairs. Microscopic observations of wear tracks after tribological tests allowed for the identification of wear mechanisms: micro-cutting/ploughing wear dominated in both the Ti6Al4V alloy and TiCN coating samples, but wear was much less pronounced overall with the TiCN coating. The study results demonstrate that the deposition of a TiCN coating simultaneously imparts low-friction and anti-wear properties to the surface of titanium alloys.



B   I   B   L   I   O   G   R   A   F   I   A
1. Gałuszka, G.Madej, M.Ozimina, D.Kasińska, J. Gałuszka, R. The characterisation of pure titanium for biomedical applications. Metalurgija 2017, 56, 191–1194. [Google Scholar]
2. Piotrowska, K. Madej, M. Kowalczyk, J. Radoń-Kobus, K. The influence of environmental conditions on the tribological properties of the Ti13Nb13Zr alloy. Metalurgija 2023, 63, 53–56. [Google Scholar]
3. Watanabe, I. Wataha, J.C. Lockwood, P.E. Shimizu, H.Cai, Z. Okabe, T. Cytotoxicity of commercial and novel binary titanium alloys with and without a surface-reaction Iayer. J. Oral Rehab. 2004, 31, 185–189. [Google Scholar] [CrossRef]
4. Koike, M. Cai, Z. Fujii, H. Brezner, M. Okabe, T. Corrosion behavior of cast titanium with reduced surface reaction layer made by a face coating method. Biomaterials 2003, 24, 454–549. [Google Scholar] [CrossRef]
5. Taira, M. Moser, J.B. Greener, E.H. Studies of Ti alloys for dental castings. Dent. Mater. 1989, 5, 45–50. [Google Scholar] [CrossRef]
6. Marciniak, J. Biomateriały w Chirurgii Kostne Wyd. Politechniki Śląskiej: Gliwice, Polska, 1992. [Google Scholar]
7. Hatamleh, M.M. Wu, X. Alnazzawi, A. Watson, J. Watts, D. Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent. Mater. 2018, 34, 676–683. [Google Scholar] [CrossRef]
8. Calin, M. Gebert, A. Ghinea, A.C. Gostin, P.F. Abdi, S. Mickel, C. Eckert, J. Designing biocompatible Ti-based metallic glasses for implant applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 875–883. [Google Scholar] [CrossRef]
9. Hoque, M.E. Showva, N.N. Ahmed, M. Rashid, A.B. Sadique, S.E.
El-Bialy, T. Xu, H. Titanium and titanium alloys in dentistry: Current trends, recent developments, and future prospects. Heliyon 2022, 8, e11300. [Google Scholar] [CrossRef]
10. Takeuchi, Y. Tanaka, M. Tanaka, J. Kamimoto, A. Furuchi, M. Imai, H. Fabrication systems for restorations and fixed dental prostheses made of titanium and titanium alloys. J. Prosthodont. Res. 2020, 64, 1–5. [Google Scholar] [CrossRef]
11. Jastrzębski, K. Jastrzębska, A. Bociaga, D. A review of mechanical properties of Diamond-Like Carbon coatings with various dopants as candidates for biomedical applications. Acta Innov. 2017, 22, 40–57. [Google Scholar]
12. Piotrowska, K. Madej, M. Granek, A. Assessment of Mechanical and Tribological Properties of Diamond-Like Carbon Coatings on the Ti13Nb13Zr Alloy. Open Eng. 2020, 10, 536–545. [Google Scholar] [CrossRef]
13. Hussein, M.A. Mohammed, A.S. Al-Aqeeli, N. Wear Characteristics of Metallic Biomaterials: A Review. Materials 2015, 8, 2749–2768. [Google Scholar] [CrossRef]
14. Zlamal, T. Mrkvica, I. Szotkowski, T. Malotova, S. The Influence of Surface Treatment of PVD Coating on Its Quality and Wear Resistant. Coatings 2019, 9, 439. [Google Scholar] [CrossRef]
15. Javier Osés, J. Fuentes, G.G. Palacio, J.F. Esparza, J. Garcia, J.A. Rodríguez, R. Antibacterial functionalization of PVD coatings on ceramics. Coatings 2018, 8, 197. [Google Scholar] [CrossRef]
16. Piotrowska, K. Madej, M. Ozimina, D. Assessment of the Functional Properties of 316L Steel Alloy Subjected to Ion Implantation Used in Biotribological Systems. Materials 2021, 14, 5525. [Google Scholar] [CrossRef]
17. Madej, M. The properties of diamond-like carbon (DLC) coatings on titanium alloy for biomedical application. Metalurgija 2022, 61, 669–672. [Google Scholar]
18. Mattox, D.M. Physical vapor deposition (PVD) processes. Met. Finish. 2001, 99, 409–423. [Google Scholar] [CrossRef]
19. Dobrzański, L.A. Fundamentals of Materials Science and Metal Science Wyd. WNT, Gliwice: Warszawa, Polska, 2002. [Google Scholar]
20. Hussain, M. Rizvi, S.H.A. Abbas, N. Sajjad, U. Shad, M.R. Badshah, M.A. Malik, A.I. Recent Developments in Coatings for Orthopedic Metallic Implants. Coatings 2021, 11, 791. [Google Scholar] [CrossRef]
21. Jelínek, M. Smetanac, K. Kocoureka, T. Dvořánková, B. Zemeka, J. Remsaa, J. Luxbachere, T. Biocompatibility and sp3/sp2 ratio of laser created DLC films. Mater. Sci. Eng. B 2010, 169, 89–93. [Google Scholar] [CrossRef]
22. Pawlak, R. Tomczyk, M. Walczak, M. The favorable and unfavorable effects of oxide and intermetallic phases in conductive materials using laser micro technologies. Mater. Sci. Eng. B 2012, 177, 1273–1280. [Google Scholar] [CrossRef]
23. Krzak-Roś, J. Filipiak, J. Pezowicz, C. Baszczuk, A. Miller, M. Kowalski, M. Będziński, R. The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method. Acta Bioeng. Biomech. 2009, 11, 21–29. [Google Scholar]
24. Wu, F. Chen, T. Wang, H. Liu, D. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding. Materials 2017, 10, 1047. [Google Scholar] [CrossRef]
25. Nematia, A. Saghafia, M. Khamseh, S. Alibakhshic, E. Zarrintajd, P. Saebe, M.R. Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships. Surf. Coat. Technol. 2018, 349, 251–259. [Google Scholar] [CrossRef]
26. Alsabeeha, N.H. Swain, M.V. Payne, A.G. Clinical performance and material properties of single-implant overdenture attachment systems. Int. J. Prosthodont. 2011, 24, 247–254. [Google Scholar]
27. Endo, K. Sachdeva, R. Araki, Y. Ohno, H. Effects of titanium nitride coatings on surface and corrosion characteristics of Ni-Ti alloy. Dent. Mater. J. 1994, 13, 228–239. [Google Scholar] [CrossRef]
28. Tamura, Y. Yokoyama, A. Watari, F. Kawasaki, T. Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials. Dent. Mater. J. 2002, 21, 355–372. [Google Scholar] [CrossRef]
29. Yoshinari, M. Oda, Y. Kato, T. Okuda, K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 2001, 22, 2043–2048. [Google Scholar] [CrossRef]
30. Sun, F. Wang, L. Li, X.C. Wei, C. Zeng, L. Ba, D.C. Song, G.Q. Sun, C.S. Effect of surface modification on the long-term stability of dental implant abutment screws by plasma nitriding treatment. Surf. Coat. Technol. 2020, 399, 126089. [Google Scholar] [CrossRef]
31. Jung, S.W. Son, M.K. Chung, C.H. Kim, H.J. Abrasion of abutment screw coated with TiN. J. Adv. Prosthodont. 2009, 1, 102–106. [Google Scholar] [CrossRef]
32. Danışman, S. Odabaş, D.
Teber, M. The Effect of TiN, TiAlN, TiCN Thin Films Obtained by Reactive Magnetron Sputtering Method on the Wear Behavior of Ti6Al4V Alloy: A Comparative Study. Coatings 2022, 12, 1238. [Google Scholar] [CrossRef]
33. Hollstein, F. Louda, P. Bio-compatible low reflective coatings for surgical tools using reactive d.c.-magnetron sputtering and arc evaporation—A comparison regarding steam sterilization resistance and nickel diffusion. Surf. Coat. Technol. 1999, 120–121, 672–681. [Google Scholar] [CrossRef]
34. Feng, H.P. Hsu, C.H. Lu, J.-K. Shy, Y.H. Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel. Mater. Sci. Eng. A 2003, 347, 123–129. [Google Scholar] [CrossRef]
35. Balázsi, K. Lukács, I.E. Gurbán, S. Menyhárd, M. Bacáková, L. Vandrovcová, M. Balázsi, C. Structural, mechanical and biological comparison of TiC and TiCN nanocomposites films. J. Eur. Ceram. Soc. 2013, 33, 2217–2221. [Google Scholar] [CrossRef]
36. Murr, L. Quinones, S. Gaytan, S. Lopez, M. Rodela, A. Martinez, E. Hernandez, D. Medina, F. Wicker, R. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 20–32. [Google Scholar] [CrossRef]
37. Zhecheva, A. Sha, W. Malinov, S. Long, A. Enhancing the Microstructure and Properties of Titanium Alloys Through Nitriding and Other Surface Engineering Methods. Surf. Coat. Technol. 2005, 200, 2192–2207. [Google Scholar] [CrossRef]
38. Ganesh, B.K.C. Ramanaiah, N. Changdrasekhar Rao, P.V. Effect of Surface Treatment on Tribological Behavior of Ti-6Al-4V Implant Alloy. J. Miner. Mater. Charact. Eng. 2012, 11, 735–743. [Google Scholar] [CrossRef]
39. Attar, H. Kent, D. (Eds.) Titanium Alloys for Biomedical Implants and Devices Metals MDPI: Basel, Switzerland, 2021. [Google Scholar]