Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[131140] Artykuł:

Scalar Measure of Acoustic Hazard Assessment

(Skalarna miara oceny zagrożenia akustycznego)
Czasopismo: Archives of Acoustics  
ISSN:  0137-5075
Opublikowano: Kwiecień 2024
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wojciech Batko Niespoza "N" jednostki033.00.00  
Andrzej Bąkowski orcid logo WMiBMKatedra Mechaniki**Takspoza "N" jednostkiInżynieria mechaniczna3350.00.00  
Leszek Radziszewski orcid logo WMiBMKatedra Mechaniki**Takspoza "N" jednostkiInżynieria mechaniczna3350.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

Hłas drogowy  zagrożenie hałasem  współczynnik przekroczenia  model hałasu Cnossos 


Keywords:

traffic noise  noise hazard  coefficient of exceedances  Cnossos noise model. 



Abstract:

he article addresses the problem of assessing the impact of road modernization on improving the acoustic
environment. It formulates a hypothesis about the advisability of adopting the scalar dimension of the decibel
space to describe acoustic hazards. It is proposed to reduce the analysis of changes in sound levels to the
analysis of changes in the coefficient of exceedance of the recommended noise levels. Its value is determined by
the decibel relation of dividing sound levels. The basis for the assessment of the effectiveness of the adopted
solution was the analysis of the statistical characteristics of monitored exceedances of recommended noise
levels, considered through the prism of the current and proposed measure. They showed greater sensitivity
of the proposed coefficient in the assessment of the improvement of the acoustic climate caused by road
modernization. For example, the median noise level for nights before the road modernization was 66.9 dB(A),
and after the modernization 65.6 dB(A). However, the coefficient of exceedances decreased by approximately
25 %. Numerical simulations, in accordance with the Cnossos noise model, showed that reducing the speed by
10 km/h will reduce the coefficient of exceedances by approximately 20 %.



B   I   B   L   I   O   G   R   A   F   I   A
References
1. Batko W., Radziszewski L., Bąkowski A. (2023),
Limitations of decibel algebra in the study of environ-
mental acoustic hazards, [in:] AIP Conference Proceed-
ings, 2949(1): 020001, doi: 10.1063/5.0166002.
2. Bąkowski A., Radziszewski L. (2022), Analysis of
the traffic parameters on a section in the city of the
national road during several years of operation, Com-
munications – Scientific Letters of the University of
Zilina, 24(1): 12–25, doi: 10.26552/com.C.2022.1.A12-
A25.
3. Bąkowski A., Radziszewski L. (2023), Urban tidal
flow noise-case study, Vibrations in Physical Systems,
34(1), doi: 10.21008/j.0860-6897.2023.1.19.
4. European Environment Agency (2020), Environmen-
tal noise in Europe, 2020, Publications Office, doi:
10.2800/686249.
5. Graziuso G., Francavilla A.B., Mancini S.,
Guarnaccia C. (2022), Application of the Harmonica
Index for noise assessment in different spatial contexts,
[in:] Journal of Physics: Conference Series, 2162(1):
012006, doi: 10.1088/1742-6596/2162/1/012006.
6. International Organization for Standardization (2016),
Acoustics Description, measurement and assessment of
environmental noise. Part 1: Basic quantities and as-
sessment procedures (ISO Standard No. 1996-1:2016),
https://www.iso.org/standard/59765.html.
7. Jandacka D., Decky M., Hodasova K., Pisca P.,
Briliak D. (2022), Influence of the urban intersection
reconstruction on the reduction of road traffic noise
pollution, Applied Sciences, 12(17): 8878, doi: 10.3390/
app12178878.
8. Khan D., Burdzik R. (2023), Measurement and ana-
lysis of transport noise and vibration: A review of
techniques, case studies, and future directions, Mea-
surement, 220: 113354, doi: 10.1016/j.measurement.
2023.113354.
9. Lu X., Kang J., Zhu P., Cai J., Guo F., Zhang Y.
(2019), Influence of urban road characteristics on
traffic noise, Transportation Research Part D: Trans-
port and Environment, 75: 136–155, doi: 10.1016/
j.trd.2019.08.026.
10. Meller G., de Lourenço W.M., de Melo V.S.G.,
de Campos Grigoletti G. (2023), Use of noise pre-
diction models for road noise mapping in locations
that do not have a standardized model: A short sys-
tematic review, Environmental Monitoring and Assess-
ment, 195(6): 740, doi: 10.1007/s10661-023-11268-9.
11. Moroe N., Mabaso P. (2022), Quantifying traf-
fic noise pollution levels: A cross-sectional survey in
South Africa, Scientific Reports, 12(1): 3454, doi:
10.1038/s41598-022-07145-z.
12. Peters R. [Ed.] (2020), Uncertainty in Acoustics:
Measurement, Prediction and Assessment, CRC Press,
doi: 10.1201/9780429470622.
13. Pleban D., Smagowska B., Radosz J. (2021), As-
sessment of occupational risk in the case of the ul-
trasonic noise exposure, Archives of Acoustics, 46(1):
167–175, doi: 10.24425/aoa.2021.136570.
14. Przysucha B., Pawlik P., Stępień B., Surowiec A.
(2021), Impact of the noise indicators components cor-
relation Ld, Le, Ln on the uncertainty of the long-term
day–evening–night noise indicator Lden, Measurement,
179: 109399, doi: 10.1016/j.measurement.2021.109399.
15. Ranpise R.B., Tandel B.N. (2022), Urban road traffic
noise monitoring, mapping, modelling, and mitigation:
A thematic review, Noise Mapping, 9(1): 48–66, doi:
10.1515/noise-2022-0004.
16. Roberts B., Seixas N.S., Mukherjee B., Neit-
zel R.L. (2018), Evaluating the risk of noise-induced
hearing loss using different noise measurement criteria,
Annals of Work Exposures and Health, 62(3): 295–306,
doi: 10.1093/annweh/wxy001.
17. Sahu A.K., Nayak S.K., Mohanty C.R., Prad-
han P.K. (2021), Traffic noise and its impact on well-
ness of the residents in sambalpur city – A critical
analysis, Archives of Acoustics, 46(2): 353–363, doi:
10.24425/aoa.2021.136588.
18. Sánchez-Fernández L.P. (2021), Environmental
noise indicators and acoustic indexes based on fuzzy
modelling for urban spaces, Ecological Indicators, 126:
107631, doi: 10.1016/j.ecolind.2021.107631.
19. Seixas N., Neitzel R., Sheppard L., Goldman B.
(2005), Alternative metrics for noise exposure among
construction workers, Annals of occupational hygiene,
49(6): 493–502, doi: 10.1093/annhyg/mei009.
20. Smiraglia M., Benocci R., Zambon G., Roman H.E.
(2016), Predicting hourly trafic noise from trafic flow
rate model: Underlying concepts for the dynamap
project, Noise mapping, 3(1), doi: 10.1515/noise-2016-
0010.
21. Sramek J., Hodasova K., Juhas M., Pitonak M.,
Duris L. (2022), Rutting prediction models in holistic
concept to sustainability of semi-rigid pavements, Civil
and Environmental Engineering, 18(1): 200–208, doi:
10.2478/cee-2022-0019.
8 Archives of Acoustics – Online First April 22, 2024
22. Upadhyay S., Parida M., Kumar B. (2023), Develop-
ment of a reference energy mean emission level traffic
noise models for bituminous pavement for mid-sized
cities in India, [in:] INTER-NOISE and NOISE-CON
Congress and Conference Proceedings, 265(5): 2899–
2906, doi: 10.3397/IN_2022_0408.
23. Verbeek T. (2018), The relation between objective
and subjective exposure to traffic noise around two
suburban highway viaducts in Ghent: Lessons for ur-
ban environmental policy, Local Environment, 23(4):
448–467, doi: 10.1080/13549839.2018.1428791.
24. Weidenfeld S., Sanok S., Fimmers R., Puth M.T.,
Aeschbach D., Elmenhorst E.M. (2021), Short-
term annoyance due to night-time road, railway, and
air traffic noise: Role of the noise source, the acous-
tical metric, and non-acoustical factors, International
Journal of Environmental Research and Public Health,
18(9): 4647, doi: 10.3390/ijerph18094647.
25. World Health Organization (2018), Environmental
noise guidelines for the European region, Regional Of-
fice for Europe.
26. Wunderli J.M. et al. (2016), Intermittency ratio:
A metric reflecting short-term temporal variations of
transportation noise exposure, Journal of Exposure
Science & Environmental Epidemiology, 26(6): 575–
585, doi: 10.1038/jes.2015.56.
27. Yang W., Cai M., Luo P. (2020), The calculation of
road traffic noise spectrum based on the noise spec-
tral characteristics of single vehicles, Applied Acoustics,
160: 107128, doi: 10.1016/j.apacoust.2019.107128.