Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[130760] Artykuł:

Assessment of heat and mass transfer processes in vapor bubbles under conditions of metastable equilibrium of liquids

Czasopismo: Archives of Thermodynamics  
ISSN:  1231-0956
Opublikowano: Grudzień 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Hanna Koshlak orcid logo WiŚGiEKatedra Inżynierii SanitarnejTakzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Heat and mass transfer  Gas-vapour bubble  Superheated liquids  Mathematical model 



Abstract:

This paper proposes a mathematical model that allows expanding the scope of research into the mechanism of heat transfer during
explosive boiling, cavitation and boiling of multicomponent liquids, identifying the most influential factors and optimizing technological processes.
The proposed model takes into account the processes of heat accumulation
in the high-boiling part of liquid mixtures (for example, emulsions) and the
use of this energy in the process of boiling their thermolabile part, as well
as for superheating the resulting steam in steam bubbles. This effect can
also be used to evaluate the effects of liquid boiling in thermodynamically
unstable regions of liquid media.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Zevnik J., Dular M.: Cavitation bubble interaction with a rigid spherical particle
on a microscale. Ultrason. Sonochem. 69(2020), 105252. doi: 10.1016/j.ultsonch.
2020.105252
[2] Albanese L., Ciriminna R., Meneguzzo F., Pagliaro M.: Energy efficient inactivation
of Saccharomyces cerevisiae via controlled hydrodynamic cavitation. Energy Sci. Eng.
3(2015), 221–238. doi: 10.1002/ese3.62
[3] Podnar A., Dular M., Sirok B., Hocevar M.: Experimental analysis of cavitation phenomena on Kaplan turbine blades using flow visualization. J. Fluids Eng. 141(2019),
7, 071101. doi: 10.1115/1.4041985
[4] Chernin L., Val D.V.: Probabilistic prediction of cavitation on rotor blades of
tidal stream turbines. Renew. Energy 113(2017), 688–696. doi: 10.1016/j.renene.
2017.06.037
[5] Pham-Thanh N., Van Tho H., Yum Y.J.: Evaluation of cavitation erosion of a propeller blade surface made of composite materials. J. Mech. Sci. Technol. 29(2015),
1629–1636. doi: 10.1007/s12206-015-0334-4
[6] Gasanov B.M., Bulanov N.V.: Effect of the droplet size of an emulsion dispersion
phase in nucleate boiling and emulsion boiling crisis. Int. J. Heat Mass Transf.
88(2015), 256–260. doi: 10.1016/j.ijheatmasstransfer.2015.04.018
[7] Roesle M.L., Lunde D.L., Kulacki F.A.: Boiling heat transfer to dilute emulsions from a vertical heated strip. J. Heat Transf. 137(2015), 4, 041503. doi:
10.1115/1.4029456
[8] Rozentsvaig A.K., Strashinskii C.S.: The growth of vapor bubbles in the volume of
superheated drops, dispersed in high-boiling liquid, Appl. Math. Sci. 8(2014), 151,
7519–7528. doi: 10.12988/ams.2014.49183
9] Ganesan B., Martini, S., Solorio J., Walsh M.K.: Determining the effects of high
intensity ultrasound on the reduction of microbes in milk and orange juice using response surface methodology. Int. J. Food Sci. 2015(2015), 350719. doi:
10.1155/2015/350719
[10] Chandrapala J., Oliver C., Kentish S., Ashokkumar M.: Ultrasonics in food processing – Food quality assurance and food safety. Trends Food Sci. Technol. 26(2012),
88–98. doi: 10.1016/j.tifs.2012.01.010
[11] Sun X., Chen S., Liu J., Zhao S., Yoon J.Y.: Hydrodynamic cavitation: A promising
technology for industrial-scale synthesis of nanomaterials. Front. Chem. 8(2020),
259. doi: 10.3389/fchem.2020.00259
[12] Prajapat A.L., Gogate P.R.: Depolymerization of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate. Ultrason. Sonochem. 51(2019), 258–263. doi: 10.1016/j.ultsonch.2018.10.009
[13] Sun X., Wang Z., Xuan X., Ji L., Li X., Tao Y., Boczkaj G., Zhao S.,
Yoon J.Y., Chen S.: Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale. Ultrason. Sonochem. 73(2021), 105543.
doi: 10.1016/j.ultsonch.2021.105543
[14] Albanese L., Baronti S., Liguori F., Meneguzzo F., Barbaro P., Vaccari F.P.: Hydrodynamic cavitation as an energy efficient process to increase biochar surface
area and porosity: A case study. J. Clean. Prod. 210(2019), 159–169. doi: 10.1016/
j.jclepro.2018.10.341
[15] Pavlenko A.M.: Change of emulsion structure during heating and boiling. Int.
J. Energy Clean Environ. 20(2019), 291–302. doi: 10.1615/InterJEnerCleanEnv.
2019032616
[16] Pavlenko A.M., Basok B.I.: Regularities of boiling-up of emulsified liquids. Heat
Transf. Res. 36(2005), 5, 419–424. doi: 10.1615/HeatTransRes.v36.i5.90
[17] Pavlenko A.M., Basok B.I.: Kinetics of water evaporation from emulsions. Heat
Transf. Res. 36(2005), 5, 425–430. doi: 10.1615/HeatTransRes.v36.i5.100
[18] Butcher J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New
York 2008. doi: 10.1002/9780470753767
[19] Darges S.J., Devahdhanush V.S., Mudawar I., Nahra H.K., Balasubramaniam R.,
Hasan M.M., Mackey J.R.: Experimental results and interfacial lift-off model predictions of critical heat flux for flow boiling with subcooled inlet conditions – In
preparation for experiments onboard the International Space Station. Int. J. Heat
Mass Tran. 183(2022), C, 122241. doi: 10.1016/j.ijheatmasstransfer.2021.122241
[20] Yin S., Wang H., Xu Bo, Yang C., Gu H.: Critical flow leakage of a vapour-liquid
mixture from sub-cooled water: Nucleation boiling study. Int. J. Heat Mass Tran.
146(2020), 118807. doi: 10.1016/j.ijheatmasstransfer.2019.118807
[21] Xiao J., Zhang J.: Experimental investigation on flow boiling bubble motion under
ultrasonic field in vertical minichannel by using bubble tracking algorithm. Ultrason.
Sonochem. 95(2023), 106365. doi: 10.1016/j.ultsonch.2023.106365
[22] Xi X., Liu H., Cai Ch., Jia M., Yin H.: Analytical investigation on homogeneous
nucleation of bicomponent fuels. Int. J. Heat Mass Tran. 132(2019), 498–507. doi:
10.1016/j.ijheatmasstransfer.2018.12.028
[23] Xi X., Liu H., Cai Ch., Jia M. Zhang W.: Analytical investigation on the homogeneous nucleation in a mono-component and bi-component droplet. In: Proc. ASME
2019 6th Int. Conf. on Micro/Nanoscale Heat and Mass Transfer, Dalian, July 8–10,
2019, V001T11A003. doi: 10.1115/MNHMT2019-3968
[24] Xi X., Cai Ch., Liu H., Wen R., Ma X., Song X.: Analytical and experimental study
on binary droplet evaporation: Inhibitory effect of adding mineral oil adjuvant to
water. Int. Commun. Heat Mass Transf. 142(2023), 106630. doi: 10.1016/j.icheat
masstransfer.2023.106630
[25] Zihe L., Ming J., Xi X., Hong L., Ping Y.: Simulation of the evaporation/boiling
transition for the vaporization of a bi-component droplet under wide-temperature
environments. Int. J. Heat Mass Tran. 193(2022), 122968. doi: 10.1016/j.ijheat
masstransfer.2022.122968
[26] Roesle M.L., Lunde D.L., Kulacki F.A.: Boiling heat transfer to dilute emulsions
from a vertical heated strip. Int. J. Heat Mass Tran. 137(2015), 8. doi: 10.1016/
j.ijheatmasstransfer.2011.12.020
[27] Dietzel D., Hitz T., Munz C.D., Kronenburg A.: Expansion rates of bubble
clusters in superheated liquids. In: Proc. Germany ILASS–Europe 2017, 28th
Conf. on Liquid Atomization and Spray Systems, Valencia, 6–8 Sept. 2017. doi:
10.4995/ILASS2017.2017.4714
[28] Pavlenko A.: Dispersed phase breakup in boiling of emulsion. Heat Transf. Res.
49(2018), 633–641. doi: 10.1615/HeatTransRes.2018020630
[29] Pavlenko A.: Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Sci. Eng. Prog. 15(2019), 1–8. doi: 10.1016/j.tsep.2019.100439
[30] Aktershev S.P., Ovchinnikov V.V.: Modelling of boiling up of a metastable liquid
with appearance of the evaporation fronts. Mod. Sci. Res. Ideas Results Technol.
1(2013), 77–82.
[31] Pavlenko A.M., Koshlak H.: Application of thermal and cavitation effects for heat
and mass transfer process intensification in multicomponent liquid media. Energies
14(2021), 7996. doi: 10.3390/en14237996
[32] Pavlenko A.M., Szkarowski A., Janta-Lipińska S.: Research on burning of water
black oil emulsions. Rocz. Ochr. Śr. 16(2014), 376–385.
[33] Pavlenko A.M.: Thermodynamic features of the intensive formation of hydrocarbon
hydrates. Energies 13(2020), 3396. doi: 10.3390/en13133396
[34] Pavlenko A.M., Koshlak H.: Heat and Mass Transfer During Phase Transitions in
Liquid Mixtures. Rocz. Ochr. Śr. 21(2019), 234–249.
[35] Koshlak H., Pavlenko A.: Method of formation of thermophysical properties of porous
materials. Rocz. Ochr. Śr. 21(2019), 1253–1262.
[36] Mura E., Massoli P., Josset C.
Loubar K.
Bellettre J.: Study of the micro-explosion
temperature of water in oil emulsion droplets during the Leidenfrost effect. Exp.
Therm. Fluid Sci. 43(2012), 63–70. doi: 10.1016/j.expthermflusci.2012.03.027
[37] Shinjo J., Xia J., Megaritis A., Ganippa L.C., Cracknell R.F.: Modeling temperature
distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing. At. Sprays. 26(2016), 551–583. doi: 10.1615/AtomizSpr.2015013302[38] Yusof N.S.M., Babgi B., Alghamdi Y., Aksu M., Madhavan J., Ashokkumar M.:
Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason. Sonochem. 29(2016), 568–576. doi: 10.1016/j.ultsonch.
2015.06.013
[39] Denner F., Schenke S.: Modeling acoustic emissions and shock formation of cavitation bubbles. Phys. Fluids 35(2023). doi: 10.1063/5.0131930
[40] Lee G.L., Law M.C.: Numerical modelling of single-bubble acoustic cavitation
in water at saturation temperature. Chem. Eng. J.. 430(2022), 133051. doi:
10.1016/j.cej.2021.133051
[41] Peng K., Qin F.G., Jiang R., Kang S.: Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis. Ultrason.
Sonochem. 69(2020), 105253. doi: 10.1016/j.ultsonch.2020.105253
[42] Phan, T., Kadivar E., Nguyen V.T., Moctar O., Park W.: Thermodynamic effects
on single cavitation bubble dynamics under various ambient temperature conditions.
Phys. Fluids 34(2022). doi: 10.1063/5.0076913
[43] Dehane A., Merouani S., Hamdaoui O., Alghyamah A.: A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process.
Ultrason. Sonochem. 73(2021), 105498. doi: 10.1016/j.ultsonch.2021.105498
[44] Feng J., Muradoglu M., Kim H., Ault J.T., Stone H.A.: Dynamics of a bubble
bouncing at a liquid/liquid/gas interface. J. Fluid Mech. 807(2016), 324–352. doi:
10.1017/jfm.2016.517
[45] Melikhov V., Yakush S., Le T.: Evaluation of energy and impulse generated by superheated steam bubble collapse in subcooled water. Nucl. Eng. Des. 366(2020), 110753.
[46] Califano V., Calabria R., Massoli P.: Experimental evaluation of the effect of
emulsion stability on micro-explosion phenomena for water-in-oil emulsions. Fuel
117(2015), 87–94. doi: 10.1016/j.fuel.2013.08.073
[47] Gilmore F.R.: The growth or collapse of a spherical bubble in a viscous compressible
liquid. CaliCal. Tecn. Inst. Rep. Los Angeles 1952, 17–29.
[48] Prosperetti A.: Vapor bubbles. Annu. Rev. Fluid Mech. 49(2017), 221–248. doi:
10.1146/annurev-fluid-010816-060221
[49] Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Funct. Anal.
15(1974), 341–363, 1974. doi: 10.1016/0022-1236(74)90027-5
[50] Pavlenko A., Koshlak H., Basok B., Hrabova T.: Thermomechanical homogenization
in steam explosion. Rocz. Ochr. Śr. 25(2023), 9–15.
[51] Shepherd J.E., Sturtevant B.: Rapid evaporation at the superheat limit. J. Fluid
Mech. 121(1982), 379–388. doi: 10.1017/S0022112082001955
[52] Lesin S., Baron A., Branover G., Merchuk I.: Experimental studies of direct contact
boiling at the superheat limit. High Temp. 31(1993), 866.
[53] Vogel A., Lauterborn W., Timm R.: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech.
206(1989), 299–338
54] Qin D., Lei S., Chen B., Li Z., Wang W., Ji X.: Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for
interior gases. Ultrason. Sonochem. 97(2023), 106456. doi: 10.1016/j.ultsonch.2023.
106456
[55] Nigmatulin R.I., Khabeev N.S., Nagiev F.B.: Dynamics, heat and mass transfer of
vapour-gas bubbles in a liquid. Int. J. Heat Mass Transf. 24(1981), 1033–1044. doi:
10.1016/0017-9310(81)90134-4
[56] Merouani S., Hamdaoui O., Rezgui Y., Guemini M.: Theoretical estimation of the
temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem.
21(2014), 53–59. doi: 10.1016/j.ultsonch.2013.05.008
[57] Fuster D., Dopazo C., Hauke G.: Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am. 129(2011), 122–131. doi:
10.1121/1.3502464