Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: Geothermal energy is a renewable energy source that utilizes heat
from the earth's core. Because of that, it is a reliable source of energy
demonstrating great potential, which is still used to a small extent.
Barriers to the wider use of geothermal energy include high
investment costs, location constraints, and the quality of resources at
various depths. Opposition from local communities is also a barrier.
It results from low environmental awareness of geothermal
opportunities, exacerbated by the lack of free access to good-quality
geothermal spatial information. Therefore, the purpose of this study
is to assess geothermal spatial information availability for selected
geoportals using selected business tools and exploratory data
analysis. The authors examined geoportals in terms of the
information provided, the way it is presented, and the features
available. They performed the assessment of their degree of
similarity using competitive profile assessment, image graphs, cluster
analysis, and affinity analysis. The research confirmed that the
available spatial information is characterized by high variability,
which indicates the lack of uniform rules for collecting, gathering,
storing, and sharing geothermal data. The foregoing leads to
information chaos, which can impede investors' investment decisions
regarding implementing a geothermal installation on a property.
B I B L I O G R A F I AAbdel Zaher, M., Elbarbary, S., El-Shahat, A., Mesbah, H., and Embaby, A. (2018). Geothermal resources in Egypt integrated with GIS-based analysis. Journal of Volcanology and Geothermal Research, 365, 1-12. https://doi.org/10.1016/j.jvolgeores.2018.09.013.
Aboud, E., Qaddah, A., Harbi, H. et al. (2021). Geothermal Resources Database in Saudi Arabia (GRDiSA): GIS model and geothermal favorability map. Arab J Geosci 14, 112. https://doi.org/10.1007/s12517-020-06426-z.
Agrawal, R., and Srikant, R. (1994). Fast algorithms for mining association rules. Very large data bases Conference, 1215, 487-499.
BdIGSCat, (2023). https://www.icgc.cat/en/Public-Administration-and-Enterprises/Infrastructures-and-energy/Geothermics, access: 29.10.2023.
Bhattacharjee, D., and Dey, M. (2015). Competitive profile matrix: a theoretical review. Abac journal, 35(2), 61-70.
Bieda, A., and Cienciała, A. (2021). Towards a Renewable Energy Source Cadastre – A Review of Examples from around the World. Energies, 14, 8095. https://doi.org/10.3390/en14238095.
Bieda, A., Bydłosz, J., Parzych, P. Preliminary assessment of urban planning documents in the Cracow area published on the Internet. [In:] Proceedings of the International Multidisciplinary Scientific GeoConference SGEM: Surveying Geology & Mining Ecology Management, Cartography and GIS, Albena, Bulgaria, 30 June–6 July 2016
Volume 3, pp. 367–374.
Bujakowski, W., Bielec, B., Miecznik, M. et al. (2020). Reconstruction of geothermal boreholes in Poland. Geotherm Energy, 8(10). https://doi.org/10.1186/s40517-020-00164-x.
Cambazoğlu, S., Pınar Yal, G., Mert Eker, A., Şen, O., and Akgün, H. (2019). Geothermal resource assessment of the Gediz Graben utilizing TOPSIS methodology. Geothermics, 80, 92-102. https://doi.org/10.1016/j.geothermics.2019.01.005.
Coolbaugh, M. F., Taranik, J. V., Rains, G. L., Shevenell, L. A., Sawatzky, D. L., Bedell, R., and Minor, T. B. (2002). A geothermal GIS for Nevada: defining regional controls and favorable exploration terrains for extensional geothermal systems. Transactions-Geothermal Resources Council, 485-490.
CanGEA, (2014). Geothermal Resource Estimate Maps of British Columbia following a Global Protocol – Methods and Data Sources.
CBDG Geology portal, (2023). https://geologia.pgi.gov.pl/arcgis/apps/MapSeries/index.html?appid=8d14826a895641e2be10385ef3005b3c, access: 15.10.2023.
CNGD, (2023). Canadian National Geothermal Database (CNGD), https://www.cangea.ca/maps.html, access: 18.10.2023.
Directive, 2009. DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC
Directive, 2018. DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources (recast), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001, access: 10.09.2023.
Dukaczewski, D., and Bielecka, E. (2009). Analiza porównawcza krajowych geoportali w Europie. Roczniki Geomatyki-Annals of Geomatics, 7(6), 35-60.
Elbarbary, S., Abdel Zaher, M., Saibi, H. et al. (2022). Geothermal renewable energy prospects of the African continent using GIS. Geotherm Energy, 10, 8. https://doi.org/10.1186/s40517-022-00219-1
Energieportal for Munich, (2023). https://geoportal.muenchen.de/portal/geothermie/, access: 18.10.2023.
Erdiwansyah, E., Gani, A., Mamat, R., Nizar, M., Yana, S., Rosdi, S. M., Zaki, M., & Sardjono, R. E. (2023). The Business Model for Access to Affordable RE on Economic, Social, and Environmental Value: A Review. Geomatics and Environmental Engineering, 17(5), 5-43. https://doi.org/10.7494/geom.2023.17.5.5
Geo-DH, (2023). http://geodh.eu/geodh-map, access: 23.10.2023.
Geothermal Energy Potential Map of Wien, (2023). https://www.wien.gv.at/english/environment/energy/maps.html, access: 27.09.2023.
Geothermal Information Layer for Oregon, (2023). https://gis.dogami.oregon.gov/maps/gtilo, access: 20.09.2023.
Geothermal Information System for Germany, (2023). https://www.geotis.de/geotisapp/geotis.php, access: 26.10.2023.
Geothermal Information Platform for Hungary , (2023)., https://map.mbfsz.gov.hu/ogre_en/, access: 26.10.2023.
Geothermies for France, (2023). https://www.geothermies.fr/espace-cartographique, access: 26.10.2023.
Global Geothermal Power Plant Map, (2023). https://www.thinkgeoenergy.com/map/, access: 23.10.2023.
Górecki, W., Sowiżdżał, A., Hajto, M. et al. (2015). Atlases of geothermal waters and energy resources in Poland. Environ Earth Sci, 74, 7487–7495. https://doi.org/10.1007/s12665-014-3832-2
Hajto, M. (2021). Stan wykorzystania energii geotermalnej w Europie i na świecie w 2020 r. Przegląd Geologiczny, 69(9). https://doi.org/10.13140/RG.2.2.36387.17443.
Han, J., Lakshmanan, L. V. S., and Pei, J. (2001). Scalable frequent-pattern mining methods: An overview. [In:] T. Fawcett (Ed.). KDD 2001: Tutorial Notes of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: The Association for Computing Machinery. https://doi.org/10.1145/502786.502792.
Iceland, 2023. Government of Iceland. https://www.government.is/topics/business-and-industry/energy/geothermal/, access: 23.09.2023.
Janaszek, A., and Kowalik, R. (2023), Analysis of Heavy Metal Contaminants and Mobility in Sewage sludge soil Mixtures for Sustainable Agricultural Practices. Water 15, 22: 3992. https://doi.org/10.3390/w15223992.
Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., ... and Zemedkun, M. T. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2(5), 324-339. https://doi.org/10.1038/s43017-021-00154-y.
Kušnír, S. (2011). Geothermal Energy in Slovakia, Intensive Programme “Renewable Energy Sources”.
Lewicki, P., Hill, T., and Czyzewska, M. (1992). Nonconscious acquisition of information. American Psychologist, 47, 796-801. https://doi.org/10.1037/0003-066X.47.6.796.
Map of Geothermal for Poland (2023). https://energia-geotermalna.org.pl/geotermia-w-polsce/, access: 15.10.2023.Mathiesen, A., Nielsen, L. H., Vosgerau, H., Poulsen, S. E., Bjørn, H., Røgen, B., ... and Vangkilde-Pedersen, T. (2020). Geothermal energy use, country update report for Denmark. [In:] Proceedings World Geothermal Congress (p. 1). https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01078.pdf.
Meier, P. F. (2020). Geothermal: A Renewable Energy Type. The Changing Energy Mix: A Systematic Comparison of Renewable and Nonrenewable Energy (New York, 2020
online edn, Oxford Academic, 18 Feb. 2021), https://doi.org/10.1093/oso/9780190098391.003.0011, access: 01.11.2023.
Meng, F., Liang, X., Xiao, Ch., and Wang, G. (2021). Geothermal resource potential assessment utilizing GIS - based multi criteria decision analysis method. Geothermics, 89, 101969. https://doi.org/10.1016/j.geothermics.2020.101969.
Multi-year Program for the Development of the use of Geothermal Resources in Poland, (2021). https://www.gov.pl/web/klimat/mapa-drogowa-rozwoju-geotermii-w-polsce, access: 16.09.2023.
National Energy and Climate Plan for the years 2021-2030, (2019), https://www.gov.pl/web/klimat/national-energy-and-climate-plan-for-the-years-2021-2030, access: 16.09.2023.
Noorollahi, Y., Itoi, R., Fujii, H., and Tanaka, T. (2007). GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan. Computers & Geosciences, 33(8), 1008-1021. https://doi.org/10.1016/j.cageo.2006.11.006.
Osinde, N. O., Byiringiro, J. B., Gichane, M. M. and Smajic, H. (2019). Process modelling of geothermal drilling system using digital twin for real-time monitoring and control. Designs, 3(3), 45. https://doi.org/10.3390/designs3030045.
Page, D. S., Nemzer, M., and Carter, A.K. (2010). Energy for Keeps: Creating Clean Electricity from Renewable Resources. Energy Education Group, 192.
Prol-Ledesma, R.M. (2000). Evaluation of the reconnaissance results in geothermal exploration using GIS. Geothermics, 29(1), 83-103. https://doi.org/10.1016/S0375-6505(99)00051-6.
Sadeghi, B., and Khalajmasoumi, M. (2015). A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renewable and Sustainable Energy Reviews, 43, 818-831. https://doi.org/10.1016/j.rser.2014.11.079.
Siejka, M., and Ślusarski, M. (2012). Próba oceny informacji geoportalowych na przykładzie wybranych miast. Czasopismo Techniczne. Środowisko, 109(2-Ś), 227-236.
Siejka, M., and Slusarski, M. (2014). Ocena geoportali internetowych powiatów, na wybranych przykładach oraz według ustalonych kryteriów. Infrastruktura i Ekologia Terenów Wiejskich, (II/2), 545–555.
Sohel, S. M., Rahman, A. M. A., and Uddin, M. A. (2014). Competitive profile matrix (CPM) as a competitors’ analysis tool: A theoretical perspective. International Journal of Human Potential Development, 3(3), 40-47.
Soltani, M., Farzanehkhameneh, P., Kashkooli, F. M., Al-Haq, A., and Nathwani, J. (2021a). Optimization and energy assessment of geothermal heat exchangers for different circulating fluids. Energy Convers Manag, 228: 113733. https://doi.org/10.1016/j.enconman.2020.113733.
Soltani, M., Kashkooli, F. M., Souri, M., Rafiei, B., Jabarifar, M., Gharali, K., and Nathwani, J. S. (2021b). Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews, 140, 110750. https://doi.org/10.1016/j.rser.2021.110750.
Soutullo, S.
Giancola, E.
Sánchez, M.N.
Ferrer, J.A.
García, D.
Súarez, M.J.
Prie-to, J.I.
Antuña-Yudego, E.
Carús, J.L.
Fernández, M.Á.
et al. (2020). Methodology for quantifying the energy saving potentials combining building retrofitting, solar thermal energy and geothermal resources. Energies, 13, 5970. https://doi.org/10.3390/en13225970.
Szalontai, L. (2014). The establishment and significance of district/regional roof cadastres in the utilization of solar energy. Acta Universitatis Sapientiae Agriculture and Environment, 6, 4551, 45. https://doi.org/10.2478/ausae-2014-0012.
Szopińska, K. (2017). Creation of Theoretical road traffic noise model with the help of GIS. [In:] Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE (Vol. 10, pp. 1-8). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
Szopińska, K., Balawejder, M., Warchoł, A. (2022). National legal regulations and location of noise barriers along the Polish highway. Transportation Research Part D: Transport and Environment, 109, 103359, 1-22, https://doi.org/10.1016/j.trd.2022.103359.
Szopińska, K., Cienciała A., Bieda A., Kwiecień J., Kulesza Ł., Parzych P. (2022). Verification of the Perception of the Local Community concerning Air Quality Using ADMS-Roads Modeling. International Journal of Environmental Research and Public Health, 19 (17), 10908, 1-28, https://doi.org/10.3390/ijerph191710908
ThermoMap, (2023). https://www.thermomap.eu/, access: 23.10.2023.
Trumpy, E., Donato, A., Gianelli, G., Gola, G., Minissale, A., Montanari, D., Santilano, A., and Manzella, A. (2015). Data integration and favourability maps for exploring geothermal systems in Sicily, southern Italy. Geothermics, 56, 1-16. https://doi.org/10.1016/j.geothermics.2015.03.004.
United States, (2023). Interactive map of geothermal resources in the United States, http://americangeosciences.org/critical-issues/maps/interactive-map-geothermal-resources-united-states, access: 29.10.2023.
Vrijlandt, M. A. W., Struijk, E. L. M., Brunner, L. G., Veldkamp, J. G., Witmans, N., Maljers, D. and Van Wees, J. D. (2019). ThermoGIS update: a renewed view on geothermal potential in the Netherlands. [In:] European Geothermal Congress (Vol. 2016, pp. 11-14). https://www.thermogis.nl/sites/default/files/2019-09/Vrijlandt_etal_ThermoGIS_Paper-EGC-2019.pdf.
Ward, J. H., Jr. (1963), Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244.
Witten, I., H., and Frank, E. (2000). Data Mining: Practical Machine Learning Tools and Techniques. New York: Morgan Kaufmann.
Yalcin, M., Gul, F.K. (2017). A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics, 67, 18-28. https://doi.org/10.1016/j.geothermics.2017.01.002.
Yousefi, H., Noorollahi, Y., Ehara, S., Itoi, R., Yousefi, A., Fujimitsu, Y., Nishijima, J., Sasaki, K. (2010). Developing the geothermal resources map of Iran. Geothermics, 39 (2), 140-151. https://doi.org/10.1016/j.geothermics.2009.11.001.