Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[129190] Artykuł:

Application of Composite Bars in Wooden, Full-Scale, Innovative Engineering Products—Experimental and Numerical Study

Czasopismo: Materials   Tom: 17, Zeszyt: 3, Strony: 1-23
ISSN:  1996-1944
Opublikowano: Luty 2024
Liczba arkuszy wydawniczych:  2.12
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Wdowiak-Postulak orcid logo WBiAKatedra Wytrzymałości Materiałów i Konstrukcji BudowlanychTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3370.0070.00  
Grzegorz Świt orcid logo WBiAKatedra Wytrzymałości Materiałów i Konstrukcji BudowlanychTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3370.0070.00  
Ilona Dziedzic-Jagocka orcid logo WZiMKKatedra Zarządzania Jakością i Własnością Intelektualną*Niespoza "N" jednostkiEkonomia i finanse33140.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

reinforcement  timber structures  bars  BFRP  GFRP  hybrid bars  flexural behavior  fire  environmental conditions  biological degradation  increased temperature  prestressing  FEM 



Abstract:

The commercialization of modular timber products as cost-effective and lightweight components has resulted in innovative engineering products, e.g., glued laminated timber, laminated veneer lumber, I-beams, cross-laminated timber and solid timber joined with wedge joints. With the passage of time, timber structures can deteriorate, or new structural elements are required to increase the stiffness or load-bearing capacity in newly built structures, e.g., lintels over large-scale glazing or garages, or to reduce cross-sectional dimensions or save costly timber material while still achieving low weight. It is in such cases that repair or correct reinforcement is required. In this experimental and numerical study, the static performance of flexural timber beams reinforced with prestressed basalt BFRP, glass GFRP and hybrid glass–basalt fiber bars is shown. The experimental tests resulted in an increase in the load-carrying capacity of BFRP (44%), GFRP (33%) and hybrid bars (43%) and an increase in the stiffness of BFRP (28%), GFRP (24%) and hybrid bars (25%). In addition to this, glued laminated timber beams reinforced with prestressed basalt rods subjected to biological degradation, 7 years of weathering and prolonged exposure to various environmental conditions were examined, and an increase in the load-bearing capacity of 27% and an increase in stiffness of 28% were obtained. In addition, full-size laminated timber beams reinforced with prestressed basalt bars were investigated in the field as an exploratory test under fire conditions at elevated temperatures, and the effect of the physical–mechanical properties during the fire was examined via an analysis of these properties after the fire. In addition, a satisfactory correlation of the numerical simulations with the experimental studies was obtained. The differences were between 1.1% and 5.5%. The concordance was due to the fact that, in this study, the Young, Poisson and shear moduli were determined for all quality classes of sawn timber. Only a significant difference resulted in the numerical analysis for the beams exposed to fire under fire conditions. The experimental, theoretical and numerical analyses in this research were exploratory and will be expanded as directions for future research.



B   I   B   L   I   O   G   R   A   F   I   A
References
1. Khaled, S. Finite Element Modelling for Timber Beams Reinforced with Carbon Fibre Reinforced Polymers (CFRP). A PHD Dissertation Submitted to the Faculty of Civil Engineering in Candidacy for the Degree of Doctor of Philosophy. BUDAPEST, 2023. Available online: https://repozitorium.omikk.bme.hu/items/9a7c910f-257e-4643-8f63-2c6be3a6de74 (accessed on 23 January 2024).
2. Sathishkumar, T.P.
Naveen, J.
Satheeshkumar, S. Hybrid fiber reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 454–471. https://doi.org/10.1177/0731684413516393.
3. Unterweger, C.
Bruggemann, O.
Furst, C. Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polym. Compos. 2014, 35, 227–236. https://doi.org/10.1002/pc.22654.
4. Ramesh, M.
Bhoopathi, R.
Deepa, C.
Sasikal, G. Experimental investigation on morphological, physical and shear properties of hybrid composite laminates reinforced with flax and carbon fibers. J. Chin. Adv. Mater. Soc. 2018, 6, 640–654. https://doi.org/10.1080/22243682.2018.1534609.
5. kilinçarslan, S.
Türker, Y.S.
Avcar, M. Numerical and Experimental Evaluation of the Mechanical Behavior of FRP-Strengthened Solid and Glulam Timber Beams. J. Eng. Manag. Syst. Eng. 2023, 2, 158–169. https://doi.org/10.56578/jemse020303.
6. Singh, S.
Uddin, M.
Prakash, C. Introduction, History, and Origin of Composite Materials
CRC Press: Boca Raton, FL, USA, 2022. https://doi.org/10.1201/9781003327370-1.
7. Van Vinh, P.
Avcar, M.
Belarbi, M.O.
Tounsi, A.
Lê, H.Q. A new higher-order mixed four-node quadrilateral finite element for static bending analysis of functionally graded plates. Structures 2023, 47, 1612–2023. https://doi.org/10.1016/J.ISTRUC.2022.11.113.
8. Tong-de, Z.
Li, Q.
Yu, B.
Huang, C.
Gao, Z.
Wang, K. Experimental study on dynamic mechanical properties of mor-tar-sandstone composite under impact load. Structures 2023, 51, 1070–2023. https://doi.org/10.1016/J.ISTRUC.2023.03.086.
9. Amrollahi, S.
Ramezanzadeh, B.
Yari, H.
Ramezanzadeh, M.
Mahdavian, M. Synthesis of polyaniline-modified graphene oxide for obtaining a high performance epoxy nanocomposite film with excellent UV blocking/anti-oxidant/anti-corrosion capabilities. Compos. Part B Eng. 2019, 173, 106804. https://doi.org/10.1016/j.compositesb.2019.05.015.
10. Rod, K.A.
Nguyen, M.T.
Elbakhshwan, M.
Gills, S.
Kutchko, B.
Varga, T.
McKinney, A.M.
Roosendaal, T.J.
Childers, M.I.
Zhao, C.
et al. Insights into the physical and chemical properties of a cement-polymer composite developed for geothermal wellbore applications. Cem. Concr. Compos. 2019, 97, 287–2019. https://doi.org/10.1016/j.cemconcomp.2018.12.022.
11. Farhad, A.
Shojaei, A.
Dordanihaghighi, S.
Jafarpour, E.
Mohammadi, S.
Arjmand, M. Effects of hybrid carbon-aramid fiber on performance of non-asbestos organic brake friction composites. Wear 2020, 452–453, 203280. https://doi.org/10.1016/j.wear.2020.203280.
12. Atefeh, A.
Shockravi, A.
Rezania, H.
Farahati, R. Investigation of anticorrosive properties of novel silane-functionalized polyamide/GO nanocomposite as steel coatings. Surf. Interfaces 2020, 18, 100453. https://doi.org/10.1016/j.surfin.2020.100453.
13. Wdowiak-Postulak, A. Ductility load capacity and bending stiffness of Scandinavian pine beams from waste timber strengthened with jute fibres. Drewno 2022, 65. https://doi.org/10.12841/wood.1644-3985.417.01.
14. Wdowiak-Postulak, A. Numerical, theoretical and experimental models of the static performance of timber beams reinforced with steel, basalt and glass pre-stressed bars. Compos. Struct. 2023, 305, 116479. https://doi.org/10.1016/j.compstruct.2022.116479.
15. Wdowiak-Postulak, A.
Bahleda, F.
Prokop, J. An Experimental and Numerical Analysis of Glued Laminated Beams Strengthened by Pre-Stressed Basalt Fibre-Reinforced Polymer Bars. Materials 2023, 16, 2776. https://doi.org/10.3390/ma16072776.
16. Wdowiak-Postulak, A.
Wieruszewski, M.
Bahleda, F.
Prokop, J.
Brol, J. Fibre-Reinforced Polymers and Steel for the Reinforcement of Wooden Elements—Experimental and Numerical Analysis. Polymers 2023, 15, 2062. https://doi.org/10.3390/polym15092062.
17. Chybiński, M.
Polus, Ł. Experimental and numerical investigations of aluminium-timber composite beams with bolted connections. Structures 2021, 34, 1942–1960.
18. Ozcifci, A. Effects of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL). Build. Environ. 2007, 42, 1510–1514.
19. Madhoushi, M.
Ansell, M.P. Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam. Int. J. Adhes. Adhes. 2004, 24, 319–325.
20. Bednarek, Z.
Pieniak, D.
Ogrodnik, P. Wytrzymałość na Zginanie i Niezawodność Kompozytu Drewnianego LVL w Warunkach Podwyższonych Temperatur. Zeszyty Naukowe SGSP 40/2010. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-4f6852a4-1b30-4cf5-b814-b5bef9e9b6c0 (accessed on 31 December 2010).
21. Pallab, D.
Tiwari, P. Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative envi-ronments. Thermochim. Acta 2019, 679, 178340. https://doi.org/10.1016/j.tca.2019.178340.
22. PN-EN 1995-1-1:2010
Eurokod 5—Projektowanie Konstrukcji Drewnianych—Część 1-1: Postanowienia Ogólne—Reguły Ogólne i Reguły Dotyczące Budynków. Polish Committee for Standardization: Warsaw, Poland, 2010.
23. Bengtsson, C.
Johansson, C.J. Test methods for glued-in rods for timber structures. In Proceedings of the 33th Conference of CIB-W18, Delft, The Netherlands, 2000
Paper 33-7-8.
24. Harvey, K.
Ansell, M.P. Improved timber connections using bonded-in GFRP rods. In Proceedings of the World Conference of Timber Engineering, Whistler Resort, BC, Canada, 31 July–3 August 2000.
25. Hunger, F.
Stepinac, M.
Rajčić, V.
van de Kuilen, J.W.G. Pull-compression tests on glued-in metric thread rods parallel to grain in glulam and laminated veneer lumber of different timber species. Eur. J. Wood Prod. 2016, 74, 379–391. https://doi.org/10.1007/s00107-015-1001-2.
26. Broughton, J.
Hutchinson, A. Pull-out behaviour of steel rods bonded into timber. Mater. Struct. 2001, 34, 100–109.
27. Pîrvu, C.
Yoshida, H.
Taki, K. Development of LVL frame structures using glued metal plate joints I: Bond quality and joint performance of LVL-metal joints using epoxy resins. J. Wood Sci. 1999, 45, 284–290. https://doi.org/10.1007/BF00833492.
28. Myslicki, S.
Bletz-Mühldorfer, O.
Diehl, F.
Lavarec, C. Fatigue of glued-in rods in engineered hardwood products—Part I: Experimental results. J. Adhes. 2019, 95, 675–701. https://doi.org/10.1080/00218464.2018.1555477.
29. Gentile, C.
Svecova, D.
Rizkalla, S.H. Timber beams strengthened with GFRP bars: Development and Applications. J. Compos. Construction 2002, 6, 11–20. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11).
30. Raftery, G.M.
Kelly, F. Basalt FRP rods for reinforcement and repair of timber. Comps. B Eng. 2015, 70, 9–19. https://doi.org/10.1016/j.compositesb.2014.10.036.
31. Yang, H.
Liu, W.
Lu, W.
Zhu, S.
Geng, Q. Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation. Constr. Build. Mater. 2016, 106, 550–563.
32. Che, C. Investigating the Effects of Glass-Fibre-Reinforced Polymer Fabrics and Bars on the Flexural Behaviour of Sawn Tim-ber and Glulam Beams. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2023.
33. Buell, T.W.
Saadatmanesh, H. Strengthening timber bridge beams using carbon fiber. J. Struct. Eng. 2005, 131, 173–187. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(173).
34. Shrimpton, C.
Siciliano, S.
Chen, H.
Vetter, Y.
Lacroix, D. An Experimental Investigation of Failure Modes in Short-Span FRP Reinforced Glulam Beams. In Proceedings of the World Conference on Timber Engineering, Oslo, Norway, 19–22 June 2023
pp. 1–7.
35. Vetter, Y. Investigating the Behaviour of Short-Span FRP-Reinforced Glulam Beams. 2022. Available online: http://hdl.handle.net/10012/18457 (accessed on 20 July 2022).
36. Lacroix, D.
Doudak, G. Experimental and analytical investigation of FRP retrofitted glued-laminated beams subjected to sim-ulated blast loading. J. Struct. Eng. 2018, 144. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002084.
37. Sulik, P.
Sędłak, B. General Rules for Research of Fire Resistance of Wooden Components [Ogólne Zasady Dotyczące Badań Odporności Ogniowej Elementów Drewnianych]. IZOLACJE 10/2019. Available online: https://www.izolacje.com.pl/artykul/sciany-stropy/193406,ogolne-zasady-dotyczace-badan-odpornosci-ogniowej-elementow-drewnianych (accessed on 18 November 2019).
38. Rozporządzenie Ministra Infrastruktry z Dnia 12 Kwietnia 2002 r. w Sprawie Warunków Technicznych, Jakim Powinny Od-powiadać Budynki i ich Usytuowanie. (DzU Nr 75 poz. 690) z Późniejszymi Zmianami (DzU 2015 poz. 1422 t.j.). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20020750690 (accessed on 15 June 2002).
39. Obwieszczenie Ministra Rozwoju i Technologii z Dnia 15 Kwietnia 2022 r. w Sprawie Ogłoszenia Jednolitego Tekstu Rozporządzenia Ministra Infrastruktury w Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Budynki i Ich Usytuowanie. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220001225 (accessed on 9 June 2022).
40. PN-EN 1995-1-2:2008
Projektowanie Konstrukcji Drewnianych. Cz. 1–2: Postanowienia Ogólne—Projektowania Konstrukcji z Uwagi na Warunki Pożarowe. Polish Committee for Standardization: Warsaw, Poland, 2008.
41. Wdowiak-Postulak, A.
Gocál, J.
Bahleda, F.
Prokop, J. Load and Deformation Analysis in Experimental and Numerical Stud-ies of Full-Size Wooden Beams Reinforced with Prestressed FRP and Steel Bars. Appl. Sci. 2023, 13, 13178. https://doi.org/10.3390/app132413178.
42. Wdowiak-Postulak, A. Natural Fibre as Reinforcement for Vintage Wood. Materials 2020, 13, 4799. https://doi.org/10.3390/ma13214799.
43. Wdowiak, A. Structural and Strength Properties of Bended Wooden Beams Reinforced with Fiber Composites. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 12 April 2019.
44. ACI 440.1R-06
Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute: Farmington Hills, MI, USA, 2006.
45. Catalog—POLPREK Composite Bars for Concrete Reinforcement, Part II—Guide for Designers. Available online: https://www.firmybudowlane.pl/firma/polprek-sp-z-oo,d8zdb.html (accessed on 16 March 2016).
46. PN-EN 14080:2013-07
Konstrukcje Drewniane—Drewno Klejone Warstwowo i Konstrukcyjne Sklejone Drewno Lite—Wymagania. Polish Committee for Standardization: Warsaw, Poland, 2013.
47. PN-D-94021:2013-10
Coniferous Construction Timber Sorted by Strength Methods. Polish Committee for Standardization: Warsaw, Poland, 2013.
48. Available online: https://www.mapei.com/pl/pl/produkty-i-rozwiazania/lista-produktow/informacje-o-produktach/mapewrap-31 (accessed on 22 November 2023).
49. PN-EN 408+A1:2012
Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. Polish Committee for Standardization: Warsaw, Poland, 2012.