Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
Brak informacji o książce wieloautorskiej, której częścią jest ten rozdział !

[128800] Rozdział:

Determining the Power and Capacity of Electricity Storage in Cooperation with the Microgrid for the Implementation of the Price Arbitration Strategy of Industrial Enterprises Installation

w książce:   Energy Supplies in the Countries from the Visegrad Group
ISBN:  978-3-0365-6075-5
Wydawca:  MDPI
Opublikowano: Kwiecień 2022
Miejsce wydania:  Basel
Liczba stron:  18
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Rafał Kuźniak Niespoza "N" jednostkiInżynieria mechaniczna25.00.00  
Artur Bartosik orcid logo WZiMKKatedra Inżynierii ProdukcjiNiezaliczony do "N"Inżynieria mechaniczna25.00.00  
Artur Pawelec orcid logo WZiMKKatedra Inżynierii ProdukcjiNiespoza "N" jednostkiNauki o zarządzaniu i jakości25.00.00  
Marek Pawełczyk orcid logo WZiMKKatedra Inżynierii ProdukcjiNiezaliczony do "N"Inżynieria mechaniczna25.00.00  

Grupa MNiSW:  Rozdział w książce niepunktowanej
Punkty MNiSW: 0


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

BESS management  price arbitration  shift load  microgrid  energy efficiency 



Abstract:

The growing worldwide costs of energy produced as a result of conventional fuel combustion,
the limited capacity of the distribution grid, and the growing number of unstable installations
based on renewable energy sources increase the need to implement systems of stabilization and
regulate loads for end users. The battery energy storage system (BESS) that operates in the internal
microgrid of an enterprise enables the management of the accumulated energy in any time zone
of the day. Using a price arbitrage strategy with an electricity storage facility, we can reduce the
cost of high electricity prices during peak demand periods. This study aims to determine the most
effective method of setting up the capacity and electrical power of an energy storage system operating
in a microgrid, in an enterprise to implement a price arbitration strategy. Such a method should
include consideration of the characteristics of the demand profile of consumer systems, the charges
related to electricity, and electricity storage costs. The proposed deterministic method is based on the
use of a defined parameter, “marginal income elasticity”. In this study, the size of energy storage
refers to the power and electric capacity of BESS that are used for the implementation of the price
arbitrage strategy.



B   I   B   L   I   O   G   R   A   F   I   A
1. Jamali, A.
Nor, N.M.
Ibrahim, T. Energy storage systems and their sizing techniques in power system—A review. In Proceedings
of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015
pp. 215–220.
[CrossRef]
2. Ross, M.
Hidalgo, R.
Abbey, C.
Joos, G. Analysis of Energy Storage sizing and technologies. In Proceedings of the 2010 IEEE
Electrical Power & Energy Conference, Halifax, NS, Canada, 25–27 August 2010
pp. 1–6. [CrossRef]
3. Paska, J. Mariusz Kłos Magazynowanie Energii Elektrycznej—Technologie, Zastosowania, Koszty, POLITECHNIKAWARSZAWSKA
Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej, Portal Polskiego Instytutu Magazynowania
Energii. Available online: http://orka.sejm.gov.pl/opinie8.nsf/nazwa/363_20161019_1/$file/363_20161019_1.pdf (accessed
on 15 September 2016).
4. Jayashree, S.
Malarvizhi, K. Methodologies for Optimal Sizing of Battery Energy Storage in Microgrids A Comprehensive Review.
In Proceedings of the 2020 International Conference on Computer Communication and Informatics (ICCCI-2020), Coimbatore,
India, 22–24 January 2020. [CrossRef]
5. Faisal, M.
Hannan, M.A.
Ker, P.J.
Hussain, A.
Mansor, M.B.
Blaabjerg, F. Review of Energy Storage System Technologies in
Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [CrossRef]
6. Kharseh, M.
Wallbaum, H. How Adding a Battery to Grid-Connected Photovoltaic System Can Increases Its Economic Performance:
Compare Different Scenarios. Engineering 2018, 1–19. [CrossRef]
7. Beaudin, M.
Zareipour, H.
Schellenberglabe, A.
Rosehart,W. Energy storage for mitigating the variability of renewable electricity
sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [CrossRef]
8. Yanga, Y.
Bremnera, S.
Menictasb, C.
Kaya, M. Battery energy storage system size determination in renewable energy systems:
A review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [CrossRef]
9. Delfino, F.
Procopio, R.
Rossi, M.
Brignone, M.
Robba, M.
Bracco, S. Microgrid Design and Operation: Toward Smart Energy in
Cities
Artech House: Norwood, MA, USA, 2018
ISBN 13 978-1-63081-150-1.
10. Tseng, S.
Li, J.
Lee, M.
Wang, B.
Ji, F.
Bai, B. A software defined energy storage: Architecture, topology, and reliability. In
Proceedings of the 2017 China International Electrical and Energy Conference (CIEEC), Beijing, China, 25–27 October 2017

pp. 737–741. [CrossRef]
11. Mongird, K.
Viswanathan, V.V.
Balducci, P.J.
Alam, J.E.
Fotedar, V.
Koritarov, V.S.
Hadjerioua, B. Energy Storage Technology and
Cost Characterization
Report PNNL-28866
US Department of Energy, HydroWires: Washington, DC, USA, 2019. [CrossRef]
12. Opathella, C.
Elkasrawy, A.
Mohamed, A.A.
Venkatesh, B. A Novel Capacity Market Model with Energy Storage. IEEE Trans.
Smart Grid 2018, 10, 5283–5293. [CrossRef]
13. Zablocki, A. Fact Sheet | Energy Storage (2019), EESI. 22 February 2019. Available online: https://www.eesi.org/papers/view/
energy-storage-2019 (accessed on 2 May 2022).
14. Olabi, A. Renewable energy and energy storage systems. Energy 2017, 136, 1–6. [CrossRef]
15. Behabtu, H.A.
Messagie, M.
Coosemans, T.
Berecibar, M.
Anlay Fante, K.
Kebede, A.A.
Mierlo, J.V. A Review of Energy Storage
Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability 2020, 12, 10511. [CrossRef]
16. Alharbi, H.
Bhattacharya, K. Stochastic Optimal Planning of Battery Energy Storage Systems for Isolated Microgrids. IEEE Trans.
Sustain. Energy 2017, 9, 211–227. [CrossRef]
17. Bahramirad, S.
Daneshi, H. Optimal sizing of smart grid storage management system in a microgrid. In Proceedings of the 2012
IEEE PES Innovative Smart Grid Technologies (ISGT),Washington, DC, USA, 16–20 January 2012
pp. 1–7. [CrossRef]
18. Siface, D. Optimal Sizing of a BESS Providing Multiple Services to the System: A Stochastic Approach. In Proceedings of the
2020 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16–18 September 2020
pp. 1–5.
[CrossRef]
19. Barcellona, S.
Piegari, L.
Tironi, E.
Musolino, V. A methodology for a correct sizing of electrochemical storage devices. In
Proceedings of the 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, Australia,
15–18 November 2015
pp. 1–7. [CrossRef]
20. Nanewortor, X.
Janik, P.
Waclawek, Z.
Leonowicz, Z. Optimal sizing of renewable energy plant-storage system for network
support. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC),
Florence, Italy, 7–10 June 2016
pp. 1–6. [CrossRef]
21. Alsaidan, I.
Khodaei, A.
Gao,W. A Comprehensive Battery Energy Storage Optimal Sizing Model for Microgrid Applications.
IEEE Trans. Power Syst. 2017, 33, 3968–3980. [CrossRef]
22. Baker, K.
Hug, G.
Li, X. Energy Storage Sizing Taking into Account Forecast Uncertainties and Receding Horizon Operation.
IEEE Trans. Sustain. Energy 2016, 8, 331–340. [CrossRef]
23. Ke, X.
Lu, N.
Jin, C. Control and size energy storage for managing energy balance of variable generation resources. In Proceedings
of the 2014 IEEE PES General Meeting | Conference & Exposition
Institute of Electrical and Electronics Engineers (IEEE): New
York, NY, USA, 2014
pp. 1–5.
24. Ma, T.
Lashway, C.R.
Song, Y.
Mohammed, O. Optimal renewable energy farm and energy storage sizing method for future
hybrid power system. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS),
Hangzhou, China, 22–25 October 2014
pp. 2827–2832. [CrossRef]
25. Zhang, J.
Guo, D.
Wang, F.
Zuo, Y.
Zhang, H. Research on energy management strategy for islanded microgrid based on hybrid
storage device. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA),
Madrid, Spain, 20–23 October 2013
pp. 91–96. [CrossRef]
26. Ganesan, S.
Subramaniam, U.
Ghodke, A.A.
Elavarasan, R.M.
Raju, K.
Bhaskar, M.S. Investigation on Sizing of Voltage Source
for a Battery Energy Storage System in Microgrid with Renewable Energy Sources. IEEE Access 2020, 8, 188861–188874. [CrossRef]
27. Amrouche, S.O.
Rekioua, D.
Rekioua, T.
Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrog.
Energy 2016, 41, 20914–20927. [CrossRef]
28. Li, J.
Chen, B.
Zhou, J.
Mo, Y. The optimal planning of wind power capacity and energy storage capacity based on the bilinear
interpolation theory. In Smart Power Distribution Systems
Elsevier: Amsterdam, The Netherlands, 2018
pp. 411–445. [CrossRef]
29. Kwon, S.
Xu, Y.
Gautam, N. Meeting Inelastic Demand in Systems with Storage and Renewable Sources. IEEE Trans. Smart Grid
2015, 8, 1619–1629. [CrossRef]
30. Moseley, P.T.
Garche, J. Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier Science, ISBN
9780444626103. 2014. Available online: https://www.researchgate.net/publication/291249437_Electrochemical_Energy_Storage_
for_Renewable_Sources_and_Grid_Balancing (accessed on 15 January 2014).
31. Zhu, X.
Yan, J.
Lu, N. A probabilistic-based PV and energy storage sizing tool for residential loads. In Proceedings of the 2016
IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016
pp. 1–5. [CrossRef]
32. Shu, Z.
Jirutitijaroen, P. Optimal sizing of energy storage system for wind power plants. In Proceedings of the 2012 IEEE Power
and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012
pp. 1–8. [CrossRef]
33. Korpikiewicz, J.G. The Optimal Choice of Electrochemical Energy Storage Parameters. Acta Energetica 2016, 1, 56–62. [CrossRef]
34. Mustafa, M.B.
Keatley, P.
Huang, Y.
Agbonaye, O.
Ademulegun, O.O.
Hewitt, N. Evaluation of a battery energy storage system
in hospitals for arbitrage and ancillary services. J. Energy Storage 2021, 43, 103183. [CrossRef]
35. Final Report Considerations for ESS Fire Safety, Det Norske Veritas (U.S.A.), Inc. Consolidated Edison and NYSERDA, New
York, Report No.: OAPUS301WIKO(PP151894), Rev. 4. 2017. Available online: https://www.nyserda.ny.gov/-/media/Files/
Publications/Research/Energy-Storage/20170118-ConEd-NYSERDA-Battery-Testing-Report.pdf (accessed on 9 February 2017).
36. Blum, A.F.
Thomas Long, P.E.R., Jr. Hazard Assessment of Lithium-Ion Battery Energy Storage Systems Final Report
Fire Protection Research
Foundation: Quincy, MA, USA, February 2016
pp. 1–108, 02169–02747. Available online: https://www.nfpa.org/-/media/
Files/News-and-Research/Fire-statistics-and-reports/Hazardous-materials/RFFireHazardAssessmentLithiumIonBattery.
ashx (accessed on 9 February 2017).
37. Energy Storage Permitting and Interconnection Process Guide for New York City: Lithium-Ion Outdoor Systems, Smart
Distributed Generation (DG) Hub, Supported by the U.S. Department of Energy, the New York State Energy Research &
Development Authority (NYSERDA), the New York Power Authority (NYPA) and the City of New York. April 2018. Available
online: https://www.nyserda.ny.gov/-/media/Files/Programs/Energy-Storage/lithium-ion-energy-storage-systemspermitting-
process-guide.pdf (accessed on 9 February 2017).
38. White Paper: Fire Protection for Li-ion Battery Energy Storage System, Siemens. 2021. Available online: https://new.siemens.
com/global/en/products/buildings/fire-safety/applications/li-ion-battery-storage-system.html (accessed on 1 May 2022).
39. Evans, A.
Strezov, V.
Evans, T.J. Assessment of utility energy storage options for increased renewable energy penetration. Renew.
Sustain. Energy Rev. 2012, 16, 4141–4147. [CrossRef]
40. Frank, S.B.
Levine, J.G. Large Energy Storage Systems Handbook
Taylor & Francis Inc.: Abingdon, UK, 2011. [CrossRef]
41. Naidu, B.R.
Panda, G.
Babu, B.C. Dynamic energy management and control of a grid-interactive DC microgrid system. In Smart
Power Distribution Systems
Elsevier: Amsterdam, The Netherlands, 2018
pp. 41–67. [CrossRef]
42. Sadeghi, A.
Torbaghan, S.S.
Gibescu, M. Benefits of Clearing Capacity Markets in Short Term Horizon: The Case of Germany. In
Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018

pp. 1–5. [CrossRef]
43. Ertugrul, N. Battery storage technologies, applications and trend in renewable energy. In Proceedings of the 2016 IEEE International
Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 14–16 November 2016
pp. 420–425.
[CrossRef]
44. Warner, J. The Handbook of Lithium-Ion Battery Pack Design
Elsevier: Amsterdam, The Netherlands, 2015. [CrossRef]
45. The International Renewable Energy Agency (IRENA). Electricity Storage and Renewables, Costs and Markets to 2030.
www.irena.org: Abu Dhabi, United Arab Emirates, 2017. Available online: https://www.irena.org/publications/2017/oct/
electricity-storage-and-renewables-costs-and-markets (accessed on 10 October 2017).