Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[125540] Artykuł:

Thermomechanical Homogenization in Steam Explosion

Czasopismo: Rocznik Ochrona Środowiska   Strony: 09-15
ISSN:  1506-218X
Opublikowano: 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Anatoliy Pavlenkо WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka4035.0024.75  
Hanna Koshlak orcid logo WiŚGiEKatedra Inżynierii SanitarnejTakzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka4035.0024.75  
Borys Basok Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Tatiana Hrabova Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

steam explosion  homogenisation  boiling 



Abstract:

A steam explosion results from intense heat transfer when a thermolabile liquid phase comes into contact with a hot liquid. As a result of such contact, microdispersed fragmentation of a high-boiling liquid occurs. A mathematical model is proposed to describe the thermomechanical crushing process, considering the formation of a vapour layer at the interface between two phases and the force interaction concerning several simultaneously boiling particles of the dispersed phase.



B   I   B   L   I   O   G   R   A   F   I   A
Adhikari, Ram, Chandra, Vaz, Jerson, Wood, D. (2016). Cavitation Inception in Cross-Flow Hydro Turbines. Energies,
9(4), 237. https://doi.org/10.3390/en9040237
Albanese, L., Baronti, S., Liguori, F., Meneguzzo, F., Barbaro, P., Vaccari, F.P. (2019). Hydrodynamic cavitation as an
energy-efficient process to increase biochar surface area and porosity: A case study. Journal of Cleaner Production,
210, 159-169. https://doi.org/10.1016/j.jclepro.2018.10.341
Badve, M.P., Alpar, T., Pandit, A.B., Gogate, P.R., Csoka, L. (2015). Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies. Ultrasonics Sonochemistry, 22, 272-277. https://doi.org/10.1016/j.ultsonch.2014.05.017
Bao, Ngoc, Tran, Haechang, Jeong, Jun-Ho, Kim, Jin-Soon, Park, Changjo, Yang, (2020). Effects of Tip Clearance Size
on Energy Performance and Pressure Fluctuation of a Tidal Propeller Turbine. Energies, 13, 4055.
https://doi.org/10.3390/en13164055
Chandrapala, J., Oliver, C., Kentish, S., Ashokkumar, M. (2012). Ultrasonics in food processing – food quality assurance
and food safety. Trends in Food Science & Technology, 26(2), 88-98. https://doi.org/10.1016/j.tifs.2012.01.010
Chernin, Leon, Dimitri, V.Val. (2017). Probabilistic prediction of cavitation on rotor blades of tidal stream turbines.
Renewable Energy, 113, 688-696. https://doi.org/10.1016/j.renene.2017.06.037
Dąbek, L., Kapjor, A., Orman, Ł.J. (2016). Ethyl alcohol boiling heat transfer on multilayer meshed surfaces. Proc. of
20th Int. Scientific Conference on The Application of Experimental and Numerical Methods in Fluid Mechanics and
Energy 2016, AIP Conference Proceedings, 1745, 020005. https://doi.org/10.1063/1.4953699
Dąbek, L., Kapjor, A., Orman, Ł.J. (2018). Boiling heat transfer augmentation on surfaces covered with phosphor bronze meshes.
Proc. of 21st Int. Scientific Conference on The Application of Experimental and Numerical Methods in Fluid Mechanics and
Energy 2018, MATEC Web of Conferences, 168, 07001. https://doi.org/10.1051/matecconf/201816807001
Dietzel, Dirk, Hitz, Timon, Munz, Claus-Dieter, Kronenburg, Andreas, (2017). Expansion rates of bubble clusters in superheated liquids. Polytechnic University of Valencia Congress, ILASS2017. 28th European Conference on Liquid Atomization and Spray Systems, 6-8 September 2017, Valencia, Spain. http://dx.doi.org/10.4995/ILASS2017.2017.4714
Thermomechanical Homogenization in Steam Explosion 15
Feng, Jie, Muradoglu, Metin, Kim, Hyoungsoo, Ault, Jesse, T., Stone, Howard, A. (2016). Dynamics of a bubble bouncing at a
liquid/liquid/gas interface. Journal of Fluid Mechanics, 807, 324-352. https://doi.org/10.1016/j.ultrasmedbio.2005.02.007
Ganesan, Balasubramanian, Martini, Silvana, Solorio, Jonathan, Walsh, Marie, K. (2015). Determining the Effects of High
Intensity Ultrasound on the Reduction of Microbes in Milk and Orange Juice Using Response Surface Methodology.
International Journal of Food Science, 2015, Article ID 350719. https://doi.org/10.1155/2015/350719
Gasanov, B.M., Bulanov, N.V. (2015). Effect of the droplet size of an emulsion dispersion phase in nucleate boiling and emulsion
boiling crisis. International Journal of Heat and Mass Transfer, 88, 256-260. https://doi.org/10.1016/j.ijheatmasstransfer
Janssen, D., Kulacki, F.A. (2017). Flow boiling of dilute emulsions. International Journal of Heat and Mass Transfer,
115, Part A, 1000-1007. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.093
Koshlak, H., Pavlenko, A. (2019). Method of formation of thermophysical properties of porous materials. Rocznik
Ochrona Srodowiska, 21(2), 1253-1262.
Merzkirch, W., Rockwell, D., Tropea, C. (2015). Orifice Plates and Venturi Tubes. Cham
Heidelberg
New York, NY
Dordrecht

London: Springer International Publishing. Available online at: https://link.springer.com/content/pdf/bfm%3A978-3-319-
16880-7%2F1.pdf
Nhut, Pham-Thanh, Hoang, Van, Tho, Young, Jin, Yum. (2015). Evaluation of cavitation erosion of a propeller blade
surface made of composite materials. Journal of Mechanical Science and Technology, 29, 1629-1636.
Nigmatulin, R., Taleyarkhan, R., Lahey, R. (2004). Evidence for nuclear emissions during acoustic cavitation revisited.
Journal of Power and Energy, 218, Part A: J. Power and Energy. https://doi.org/10.1243/0957650041562208
Pavlenko, A., Koshlak, H., Usenko, B. (2014a). The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry, 6(3), 55-59.
Pavlenko, A., Koshlak, H., Usenko, B. (2014b). Heat and mass transfer in fluidised layer. Metallurgical and Mining
Industry, 6(6), 96-100.
Pavlenko, A.M. (2018). Dispersed phase breakup in boiling of emulsion. Heat Transfer Research, 49(7), 633-641,
https://doi.org/10.1615/HeatTransRes.2018020630
Pavlenko, A.M. (2019). Energy conversion in heat and mass transfer processes in boiling emulsions. Thermal Science
and Engineering Progress, 15, 1-8. https://doi.org/10.1016/j.tsep.2019.100439
Pavlenko, A.M., Koshlak, H. (2021). Application of thermal and cavitation effects for heat and mass transfer process
intensification in multicomponent liquid media. Energies, 14(23), 7996. https://doi.org/10.3390/en14237996
Prajapat, A.L., Gogate, P.R. (2019). Depolymerisation of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate. Ultrasonics Sonochemistry, 51, 258-263.
https://doi.org/10.1016/j.ultsonch.2018.10.009
Sun, X., Wang, Z., Xuan, X., Ji, L., Li, X., Tao, Y., Boczkaj, G., Zhao, S., Yoon, J.Y., Chen, S. (2021). Disinfection
characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale. Ultrasonics Sonochemistry,
73, 105543. https://doi.org/10.1016/j.ultsonch.2021.105543
Xun, Sun, Songying, Chen, Jingting, Liu, Shan, Zhao, Joon, Yong, Yoon. (2020). Hydrodynamic Cavitation: A Promising
Technology for Industrial-Scale Synthesis of Nanomaterials. Front. Chem., 15. https://doi.org/10.3389/fchem.2020.00259
Zevnik, Jure, Dular, Matevž, (2020). Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrasonics Sonochemistry, 69, 105252. https://doi.org/10.1016/j.ultsonch.2020.105252