Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: This paper evaluates surface roughness effects on the properties of a-C:H:Si coatings obtained using plasma-assisted chemical vapor deposition (PACVD). Prior to coating deposition, the surfaces of the samples were subjected to grinding (Ra = 0.25) and then polishing (Ra = 0.05) or sandblasting (Ra = 1.41). Microscopic observations, measurements of thickness, wettability, surface topography, and tribological tests were used to characterize the substrate. The coating microstructure, thickness, and chemical content were investigated using scanning electron microscopy with energy dispersive spectroscopy (EDS). The geometric structure of the surface was examined using confocal microscopy before and after tribological tests. Tribological studies used a ball-on-disk sliding configuration in reciprocating motion under dry friction and cutting oil lubrication. The values of the contact angles were indicative of surface hydrophilic characteristics. Compared with the sandblasted surfaces, the adhesion strength of the coatings deposited on the polished surfaces was found to be higher. The coatings contributed to the improvement of friction and wear parameters. Under dry friction, a-C:H:Si coating friction coefficients and linear and volumetric wear on the polished surface were reduced compared with the sandblasted surface, respectively, by 10%, 83%, and 85%. In addition, the lubricant contributed to reducing the friction coefficients of the coating applied to the sandblasted sample compared with the polished sample without the coating by about 94%. Microscopic observations of wear traces allowed the determination of wear mechanisms; in the case of Ti13Nb13Zr, it was tribochemical wear through oxidation, while in the case of coatings, scratching and microcutting dominated
B I B L I O G R A F I A1. Ehiasarian, A.
Purandare, Y.
Sugumaran, A.
Hovsepian, P.
Hatto, P.
De Backer, J. Improving the Quality of Friction Stir Welds
in Aluminium Alloys. Coatings 2021, 11, 539. [CrossRef]
2. Dobrzański, L.A.
Dobrzańska-Danikiewicz, A.D. Obróbka powierzchni materiałów inżynierskich. Open Access Libr. 2011,
5, 1–480.
3. Burakowski, T.
Wierzchoń, T. Inżynieria Powierzchni Metali. Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 1995.
4. Niemczewska-Wójcik, M. Dualny System Charakteryzowania Powierzchni Technologicznej i Eksploatacyjnej Warstwy Wierchniej
Elementów Trących
Wydawnictwo Naukowe Instytutu Technologii Eksploatacji PIB: Radom, Poland, 2018.
5. Zaleski, K.
Matuszak, J.
Zaleski, R. Metrologia Warstwy Wierzchniej. Wydawnictwo Politechniki Lubelskiej: Lublin,
Poland, 2018.
6. Legutko, S.
Nosal, S. Kształtowanie Technologicznej i Eksploatacyjnej Warstwy Wierzchniej Części Maszyn
OWN PAN: Poznań,
Poland, 2004.
7. Posmyk, A. Kształtowanie Wła´sciwo´sci Tribologicznych Warstw Wierzchnich Tworzyw na Bazie Aluminium
Wydawnictwo Politechniki
Śląskiej: Gliwice, Poland, 2001.
8. Senatorski, J. Podnoszenie Tribologicznych Właścwiości Materiałów Przez Obróbkę Cieplną i Powierzchniową
Wydawnictwo Instytut
Mechaniki Precyzyjnej: Warsaw, Poland, 2003.
9. Styp-Rekowski, M.
Musiał, J.Wear processes acompanying rolling friction. Probl. Eksploat. 2006, 3, 189–199.
10. Gałda, L.Wybrane czynniki wpływaja˛ce na odporność na zużycie węzłów ślizgowych. Autobusy 2016, 6, 861–865.
Coatings 2023, 13, 1629 22 of 23
11. Płaza, S.
Margielewski, L.
Celichowski, G. Wstęp do Tribologii i Tribochemia
Wydawnictwo Uniwersytetu Łódzkiego: Łódź,
Poland, 2005.
12. Madej, M.
Marczewska-Boczkowska, K.
Ozimina, D. Effect of tungsten on the durability of diamond-like carbon coatings in the
chemical industry. Przemysł Chem. 2014, 93, 500–505.
13. Madej, M.
Ozimina, D.
Kurzydłowski, K.
Płociński, T.
Wieciński, P.
Styp-Rekowski, M.
Matuszewski, M. Properties of
diamond-like carbon coatings deposited on CoCrMo alloys. Trans. FAMENA 2015, 39, 79–88.
14. Madej, M.
Ozimina, D. Electroless Ni-P-Al2O3 composite coatings. Kovove Mater. 2006, 44, 291–296.
15. Radek, N.
Szczotok, A.
Gądek-Moszczak, A.
Dwornicka, R.
Broncek, J.
Pietraszek, J. The impact of laser processing parameters
on the properties of electro-spark deposited coatings. Arch. Metall. Mater. 2018, 63, 809–816.
16. Radhakrishnan, R.M.
Ramamoorthi, V.
Srinivasan, R. Wear characteristics of additively manufactured AlSi10Mg against EN-31
and silicon carbide abrasive sheet counter bodies using box Behnken design approach. Proc. Inst. Mech. Eng. Part L J. Mater.
Des. Appl. 2021, 236, 779–786. [CrossRef]
17. Chakkravarthy, V.
Jose, S.P.
Lakshmanan, M.
Manojkumar, P.
Lakshmi Narayan, R.
Kumaran, M. Additive manufacturing of
novel Ti-30Nb-2Zr biomimetic scaffolds for successful limb salvage. Mater. Today Proc. 2022, 64, 1711–1716. [CrossRef]
18. Kumar, N.
Sharma, A.
Manoj, M.K.
Ahn, B. Taguchi optimization of tribological properties and corrosion behavior of selflubricating
Al–Mg–Si/MoS2 composite processed by powder metallurgy. J. Mater. Res. Technol. 2023, 26, 1185–1197. [CrossRef]
19. Kozior, T.
Mamun, A.
Trabelsi, M.
Sabantina, L. Comparative Analysis of Polymer Composites Produced by FFF and PJM 3D
Printing and Electrospinning Technologies for Possible Filter Applications. Coatings 2022, 12, 48. [CrossRef]
20. Piotrowska, K.
Madej, M.
Ozimina, D. Assessment of the Functional Properties of 316L Steel Alloy Subjected to Ion Implantation
Used in Biotribological Systems. Materials 2021, 14, 5525. [CrossRef] [PubMed]
21. Milewski, K.
Kudli ´ nski, J.
Madej, M.
Ozimina, D. The interaction between diamond like carbon (DLC) coatings and ionic liquids
under boundary lubrication conditions. Metalurgija 2017, 1–2, 55–58.
22. Ali, E.
Jean, M.M. Superior wear resistance of diamond and DLC coating. Curr. Opin. Solid State Mater. Sci. 2018, 22, 243–254.
[CrossRef]
23. Naoto, O.
Masanori, H.
Kazuhiro, K.
Akasaka, H.
Tsujioka, M.
Harakuri, K.
Hirata, A.
Ohana, T.
Inaba, H.
Kano, M.
et al.
Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [CrossRef]
24. Zaki, A.
Faheemuddin, P.
Naila, R.M.
Ayesha, S. Effect of sandblasting, annealing and hydrophobic treatment on the nanomechanical
and corrosion behaviour of n-TiO2-coated 316L stainless steel. Curr. Sci. Assoc. 2016, 110, 353–362. Available online:
https://www.jstor.org/stable/24906780 (accessed on 4 August 2023).
25. Poręba, M.
Reichert, M.
Sieniawski, J.
Zawadzka, P. Evaluation of DLC coating on IN 718 alloy produced by glow discharge
plasma assisted CVD method. In˙zynieria Mater. 2014, 4, 35.
26. Chakkravarthy, V.
Manojkumar, P.
Lakshmanan, M.
Eswar Prasad, K.
Dafale, R.
Chitra Vadhana, V.
Narayan, R.L. Comparing
bio-tribocorrosion of selective laser melted Titanium-25% Niobium and conventionally manufactured Ti-6Al-4 V in inflammatory
conditions. J. Alloys Compd. 2023, 952, 169852. [CrossRef]
27. Jastrzębski, K.
Jastrzębska, A.
Bociaga, D. A review of mechanical properties of Diamond-Like Carbon coatings with various
dopants as candidates for biomedical applications. Acta Innov. 2017, 22, 40–57.
28. Chodun, R.
Skowronski, L.
Trzcinski, M.
Nowakowska-Langier, K.
Kulikowski, K.
Naparty, M.
Radziszewski, M.
Zdunek, K.
The Amorphous Carbon Thin Films Synthesized by Gas Injection Magnetron Sputtering Technique in Various Gas Atmospheres.
Coatings 2023, 13, 827. [CrossRef]
29. Meng, Y.
Xu, J.
Ma, L.
Jin, Z.
Prakash, B.
Ma, T.
Wang, W. A review of advances in tribology in 2020–2021. Friction 2022,
10, 1443–1595. [CrossRef]
30. Chronowska, K.
Kot, M.
Major, Ł. Analysis of the Properties of New Groups of Coatings Applied in Highly Loaded Machine Components
Zeszyty Naukowe Politechniki S´la˛skiej: Gliwice, Poland, 2014
Volume 82, pp. 41–49.
31. Vetter, J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC
types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [CrossRef]
32. Madej, M.
Ozimina, D.
Gałuszka, R.
Gałuszka, G. Corrosion, friction and wear performance of diamond like carbon coating.
Metallurgija 2016, 55, 679–682.
33. Peng, J.
Huang, J.
Qiu, X.
Xiao, Y. Friction and wear performance of hydrogenated diamond-like coatings with non-metal
element complex dopants against alumina in ambient air. Wear 2023, 514–515, 204571. [CrossRef]
34. Michalczewski, R.
Kalbarczyk, M.
Ma´nkowska-Snopczy´ nska, A.
Wieczorek, A. The Effect of a Gear Oil on Abrasion, Scuffing,
and Pitting of the DLC-Coated 18CrNiMo7-6 Steel. Coatings 2018, 9, 2. [CrossRef]
35. Derakhshandeh, M.R.
Eshraghi, M.J.
Javaheri, M.
Khamseh, S. Diamond-like Carbon-Deposited Films: A New Class of
Bio-Corrosion Protective Coatings. Surf. Inov. 2018, 6, 266–276. [CrossRef]
36. Batory, D.
J˛edrzejczak, A.
Sobczyk-Guzenda, A.
Szyma´ nski, W.
Niedzielski, P. Studies of thermal stability of a-C:H:Si
coatings produced by radio-frequency plasma assisted chemical vapour deposition (RF-PACVD) method. In˙zynieria Mater. 2016,
37, 178–183. [CrossRef]
37. Kim, M.G.
Lee, K.R.
Eun, K.Y. Tribological behavior of silicon-incorporated diamond-like carbon films. Surf. Coating. Technol.
1999, 112, 204–209. [CrossRef]
Coatings 2023, 13, 1629 23 of 23
38. Milewski, K.
Piotrowska, K.
Madej, M. Assessment of the properties of diamond-like carbon coatings (DLC) used in the lime
industry. Metalurgija 2024, 63, 81–84.
39. Malisz, K.
Świeczko-Żurek, B.
Sionkowska, A. Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical
Applications—A Review. Materials 2023, 16, 3420. [CrossRef] [PubMed]
40. Bai, M.
Yang, L.
Li, J.
Lou, L.
Sun, S.
Inkson, B. Mechanical and tribological properties of Si and W doped diamond like carbon
(DLC) under dry reciprocating sliding conditions. Wear 2021, 484–485, 204046. [CrossRef]
41. Dipen, K.R.
Ashwini, K.
Ajit, B.
Pradeep, L.M. Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications.
Appl. Sci. 2021, 11, 4445. [CrossRef]
42. C´ oric´, D.
ŠnajdarMusa,M.
Sakoman,M.
Alar, Ž. Analysis of Different ComplexMultilayer PACVD Coatings on Nanostructured
WC-Co Cemented Carbide. Coatings 2021, 11, 823. [CrossRef]
43. Chayeuski, V.
Zhylinski, V.
Kazachenko, V.
Tarasevich, A.
Taleb, A. Structural and Mechanical Properties of DLC/TiN Coatings
on Carbide forWood-Cutting Applications. Coatings 2023, 13, 1192. [CrossRef]
44. Chan, K.S.
Koike, M.
Okabe, T. Modeling wear of cast Ti alloys. Acta Biomater. 2007, 3, 383–389. [CrossRef] [PubMed]
45. Revankar, G.D.
Shetty, R.
Rao, S.S.
Gaitonde, V.N.Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing
process. J. Mater. Res. Technol. 2017, 6, 13–32. [CrossRef]
46. Available online: https://www.oerlikon.com/balzers/be/en/portfolio/surface-technologies/pacvd/ (accessed on 22 July 2023).
47. Barnat Hunek, D. Swobodna Energia Powierzchniowa Jako Czynnik Kształtuja˛cy Skutecznos´c´ Hydrofobizacji w Ochronie Konstrukcji
Budowlanych
Monografia
Wydawnictwo Politechniki Lubelskiej: Lublin, Poland, 2016.