Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[125150] Artykuł:

Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals

Czasopismo: Materials   Tom: 16(13)
ISSN:  1996-1944
Opublikowano: Lipiec 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Hanna Koshlak orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

coal fly ash  alkaline fusion  synthetic zeolite  specific surface area  removal of heavy metals 



Abstract:

The article presents studies of the influence of parameters of synthesis modes and alkali concentration on the synthesis of zeolite materials from coal fly ash (CFA). The purpose of the study was to synthesise zeolite materials from CFA using the method of alkaline fusion and to determine the susceptibility of selected heavy-metal ions to removal from solutions in an ion exchange process on a selected mesoporous zeolite. It was found that the crystalline phase of sodalite was dominated in all of the samples synthesized. The specific surface area (SBET) of the samples was evaluated using the standard Brunauer–Emmett–Teller (BET) method using N2 sorption. Crystalline zeolite materials have been used to study the efficiency of removing heavy metals from aqueous solutions of Ni2+, Cd2+ and Pb2+. The adsorption data were analyzed using the Langmuir and Freundlich isotherm model. When comparing the estimated coefficient of determination (r2), it was noticed that the sorption data are more accurately described by the Langmuir isotherm and the pseudo-second-order kinetic model. The results of metal adsorption experiments suggest that the synthesized zeolite material has great potential to be used as an inexpensive and alternative source in the production of adsorbents.



B   I   B   L   I   O   G   R   A   F   I   A
Petrović, M.
Fiket, Ž. Environmental damage caused by coal combustion residue disposal: A critical review of risk assessment methodologies. Chemosphere 2022, 299, 134410. [Google Scholar] [CrossRef] [PubMed]
Koshlak, H. Gas Formation Reactions in the Raw Mixture Based on TPP Ash. Rocz. Ochr. Śr. 2021, 23, 106–116. [Google Scholar] [CrossRef]
Choudhary, A.K.S.
Kumar, S.
Maity, S. A review on mineralogical speciation, global oc-currence and distribution of rare earths and Yttrium (REY) in coal ash. J. Earth Syst. Sci. 2022, 131, 188. [Google Scholar] [CrossRef]
Koshlak, H.
Kaczan, A. The Investigation of Thermophysical Characteristics of Porous Insulation Materials Based on Burshtyn TPP Ash. Rocz. Ochr. Śr. 2020, 22, 537–548. [Google Scholar]
Zhang, X.
Li, C.
Zheng, S.
Di, Y.
Sun, Z. A review of the synthesis and application of zeolites from coal-based solid wastes. Int. J. Miner. Metall. Mater. 2022, 29, 1–21. [Google Scholar] [CrossRef]
Yu, X.
Cui, Y.
Chen, Y.
Chang, I.-S.
Wu, J. The drivers of collaborative innovation of the comprehensive utilization technologies of coal fly ash in China: A network analysis. Environ. Sci. Pollut. Res. 2022, 29, 56291–56308. [Google Scholar] [CrossRef]
Abbass, W.
Abbas, S.
Aslam, F.
Ahmed, A.
Ahmed, T.
Hashir, A.
Mamdouh, A. Manufacturing of Sustainable Untreated Coal Ash Masonry Units for Structural Applications. Materials 2022, 15, 4003. [Google Scholar] [CrossRef]
Mo, K.H.
Ling, T.-C. Utilization of coal fly ash and bottom ash in brick and block products. In Low Carbon Stabilization and Solidification of Hazardous Wastes
Elsevier: Amsterdam, The Netherlands, 2022
pp. 355–371. [Google Scholar]
Loya, M.I.
Rawani, A.M. A review: Promising applications for utilization of fly ash. Int. J. Adv. Technol. Eng. Sci. 2014, 2, 7. [Google Scholar]
Boycheva, S.
Zgureva, D.
Lazarova, K.
Babeva, T.
Popov, C.
Lazarova, H.
Popova, M. Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications. Materials 2020, 13, 2014. [Google Scholar] [CrossRef]
Belviso, C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
Bonenfant, D.
Kharoune, M.
Niquette, P.
Mimeault, M.
Hausler, R. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 2008, 9, 01337. [Google Scholar] [CrossRef]
Koshlak, H.
Pavlenko, A. Method of formation of thermophysical properties of porous materials. Rocz. Ochr. Śr. 2019, 2, 1253–1262. [Google Scholar]
Basok, B.
Davydenko, B.
Koshlak, H.
Novikov, V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022, 15, 4843. [Google Scholar] [CrossRef]
Basok, B.
Davydenko, B.
Koshlak, H.
Lysenko, O. Influence of the heat insulation layer on the thermally stressed condition of the facade wall. Prod. Eng. Arch. 2022, 28, 2, 123–131. [Google Scholar] [CrossRef]
Längauer, D.
Čablík, V.
Hredzák, S.
Zubrik, A.
Matik, M.
Danková, Z. Preparation of Synthetic Zeolites from Coal Fly Ash by Hydrothermal Synthesis. Materials 2021, 14, 1267. [Google Scholar] [CrossRef]
Nasser, G.A.
Muraza, O.
Nishitoba, T.
Malaibari, Z.
Yamani, Z.H.
Al-Shammari, T.K.
Yokoi, T. Microwave. Assisted Hydrothermal Synthesis of CHA Zeolite for Methanol-to-Olefins Reaction. Ind. Eng. Chem. Res. 2019, 58, 60–68. [Google Scholar] [CrossRef]
Park, J.-W.
Kim, S.-S.
Lee, W.-K.
Lee, C.-H. Optimization of crystallization parameters for synthesis of zeolitic materials from coal fly ash using fusion/hydrothermal method. Mol. Cryst. Liq. Cryst. 2020, 704, 136–144. [Google Scholar] [CrossRef]
Aldahri, T.H. Microwave and Ultrasonic Assisted Synthesis of Zeolites from Coal Fly Ash in Batch and Circulating Batch Operation. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2019. [Google Scholar]
Jha, B.
Singh, D.N. Advanced Structured Materials, Fly Ash Zeolites Innovations, Applications and Directions
Springer: Singapore, 2016. [Google Scholar]
Wajima, T.
Sugawara, K. Material conversion from various incinerated ashes using alkali fusion method. Int. J. Soc. Mater. Eng. Resour. 2010, 17, 47–52. [Google Scholar] [CrossRef][Green Version]
Visa, M.
Chelaru, A.M. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl. Surf. Sci. 2014, 303, 14–22. [Google Scholar] [CrossRef]
Ma, G.
Bai, C.
Wang, M.
He, P. Effects of Si/Al Ratios on the Bulk-Type Zeolite Formation Using Synthetic Metakaolin-Based Geopolymer with Designated Composition. Crystals 2021, 11, 1310. [Google Scholar] [CrossRef]
DRuen-Ngam, D.
Rungsuk, D.
Apiratikul, R.
Pavasant, P. Zeolite Formation from Coal Fly Ash and Its Adsorption Potential. J. Air Waste Manag. Assoc. 2009, 59, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
Sivalingam, S.
Sen, S. Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl. Surf. Sci. 2018, 455, 903–910. [Google Scholar] [CrossRef]
Verrecchia, G.
Cafiero, L.
de Caprariis, B.
Dell’Era, A.
Pettiti, I.
Tuffi, R.
Scarsella, M. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption. Fuel 2020, 276, 118041. [Google Scholar] [CrossRef]
Yuna, Z. Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environ. Eng. Sci. 2016, 33, 443–454. [Google Scholar] [CrossRef]
Wang, Y.
Guo, Y.
Yang, Z.
Cai, H.
Xavier, Q. Synthesis of zeolites using fly ash and their application in removing heavy metals from waters. Sci. China Ser. D Earth Sci. 2003, 46, 967–976. [Google Scholar] [CrossRef]
Bai, S.
Chu, M.
Zhou, L.
Chang, Z.
Zhang, C.
Liu, B. Removal of heavy metals from aqueous solutions by X-type zeolite prepared from combination of oil shale ash and coal fly ash. Energy Sources Part A Recover. Util Environ. Eff. 2022, 44, 5113–5123. [Google Scholar] [CrossRef]
Buzukashvili, S.
Sommerville, R.
Rowson, N.A.
Waters, K.E. An overview of zeolites synthesised from coal fly ash and their potential for extracting heavy metals from industrial wastewater. Can. Metall. Q. 2023. [Google Scholar] [CrossRef]
ASTM C618-19
American Society for Testing and Materials, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [CrossRef]
Ríos, C.A.
Williams, C.D.
Fullen, M.A. Nucleation and Growth History of Zeolite LTA Synthesized from Kaolinite by Two Different Methods. Appl. Clay Sci. 2009, 42, 446–454. [Google Scholar] [CrossRef]
Günther, C.
Richter, H.
Voigt, I.
Michaelis, A.
Tzscheutschler, H.
Krause-Rehberg, R.
Serra, J.M. Synthesis and characterization of a sulfur containing hydroxy sodalite without sulfur radicals. Microporous Mesoporous Mater. 2015, 214, 1–7. [Google Scholar] [CrossRef]
Sing, K.S.W.
Everett, D.H.
Haul, R.A.W.
Moscou, L.
Pierotti, R.A.
Rouquerol, J.
Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603. [Google Scholar] [CrossRef]
Ulfa, M.
Masykur, A.
Nofitasari, A.F.
Sholeha, N.A.
Suprapto, S.
Bahruji, H.
Prasetyoko, D. Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+, Removal. Materials 2022, 15, 2745. [Google Scholar] [CrossRef]
Lagergren, S.
Svenska, B.R. Zur theorie der sogenannten adsorption geloester stoffe. Veternskapsakad Handl. 1898, 24, 1–39. [Google Scholar]
Ho, Y.S.
McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
Fechtelkord, M. Structural study of Na8[AlSiO4]6(CO3)x(HCOO)2−2x(H2O)4x, 0.2 ≤ x ≤ 1, synthesized in organic solvents: Order and disorder of carbonate and formate anions in sodalite. Microporous Mesoporous Mater. 1999, 28, 335–351. [Google Scholar] [CrossRef]
Nadezhina, T.N.
Rastsvetaeva, R.K.
Pobedimskaya, E.A.
Khomyakov, A.P. Crystal structure of natural hydroxyl-containing cancrinite. Sov. Phys. Crystallogr. Engl. Trans. 1991, 36, 325–327. [Google Scholar]
Gatta, G.D.
Rotiroti, N.
Ballaran, T.B.
Pavese, A. Leucite at high pressure: Elastic behavior, phase stability, and petrological implications. Am. Miner. 2008, 93, 1588–1596. [Google Scholar] [CrossRef]
Luhrs, H.
Derr, J.
Fischer, R.X. K and Ca exchange behavior of zeolite A. Microporous Mesoporous Mater. 2012, 151, 457–465. [Google Scholar] [CrossRef]