Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The study deals with experiments and predictions on turbulent flow and heat exchange
in a fully developed slurry flow in a vertical upward pipe. Four slurries were considered: two with
glass spheres particles with diameters of 0.125 mm and 0.240 mm, respectively, and two with sand
spheres particles with diameters of 0.470 mm and 0.780 mm, respectively. The volume concentration
of the particles was changed in the range of 10% to 40%. This study has indirectly demonstrated the
existence of turbulence suppression to a degree dependent on the diameter of the solid particles. A
mathematical model for heat transfer between slurry and pipe was developed using the two-equation
turbulence model and a specially designed wall function, including particle diameter and solid
concentration. The model assumed a constant wall temperature and heat flux. The study’s objective
was to determine the influence of the diameter of the solid particles on the heat exchange. The Nusselt
number was found to change sinusoidal, reaching a maximum for a slurry with d = 0.125 mm, and a
minimum for d = 0.470 mm. The higher the solid concentration, the lower the Nusselt number. The
novelty and value of this study lies in the deeper characterisation and understanding of the influence
of the diameter of solid particles on heat exchange.
B I B L I O G R A F I A1. Sape Miedema, P.A. Slurry Transport: Fundamentals, Historical Overview and Delft Head Loss and Limit Deposit Velocity Framework
TU
Delft Open: Delft, The Netherlands, 2016
ISBN 9789461862938.
2. Zengeni, B.
Nekhavhambe, D.
Goosen, P. Sensitivity of non-Newtonian slurry viscous properties to temperature. In Proceedings
of the 19th Conference on Transport and Sedimentation of Solid Particles, Cape Town, South Africa, 24–27 September 2019
pp.
285–292.
3. Dai, Y.
Zhang, Y.
Li, X. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean
mining. Ocean Eng. 2021, 220, 108411. [CrossRef]
4. Wang, R.
Zhu, Z.
Su, X.
Mianowicz, K. Slurry pumps in deep-sea mining: A review of numerical and experimental studies.
Ocean Eng. 2022, 251, 111150. [CrossRef]
5. Shook, C.A.
Roco, M.C. Slurry Flow: Principles and Practice. Howard Brenner
Digital Press: Clifton, NJ, USA, 2013
Available
online: https://www.perlego.com/book/1884007/slurry-flow-principles-and-practice-pdf (accessed on 3 September 2023).
6. Baha, A.P.E. Slurry Systems Handbook, 2nd ed.
McGraw Hill: New York, NY, USA, 2021.
7. Reddy, N.V.K.
Pothal, J.K.
Barik, R.
Senapati, P.K. Pipeline slurry transportation system: An overview. J. Pipeline Syst. Eng. Pract.
2023, 14, 1–10. [CrossRef]
8. Csengeri, E. Fuel Discharge towards the Core Catcher in Sodium-Cooled Fast Reactor under Severe Accident Conditions with
Mitigation Devices. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2022.
9. Dong, H.
Aziz, N.A.
Shafri, H.Z.M.
Ahmad, K.A.B. Numerical study on transportation of cemented paste backfill slurry in bend
pipe. Processes 2022, 10, 1454. [CrossRef]
10. Wilson, K.C.
Addie, G.R.
Sellgren, A.
Clift, R. Slurry Transport Using Centrifugal Pumps, 3rd ed.
Springer: Berlin/Heidelberg,
Germany, 2006
Available online: https://link.springer.com/book/10.1007/b101079 (accessed on 3 September 2023).
11. Chen, Z.X.
Hu, H.X.
Guo, X.M.
Zheng, Y.G. Effect of groove depth on the slurry erosion of V-shaped grooved surfaces. Wear
2022, 488–489, 204133. [CrossRef]
12. Zhang, R.
Sun, L.
Li, Y.
Yin, J. Numerical analysis of solid particle erosion caused by slurry in dredging pipelines based on a
particle separation method. Powder Technol. 2023, 428, 118826. [CrossRef]
13. Shaukat, R.
Qamar, A.
Anwar, Z.
Imran, S.
Amjad, M.
Ali, H.M. Experimental study on heat transfer performance of mPCM
slurry flow in microchannels. J. Therm. Anal. Calorim. 2023, 1–13. [CrossRef]
14. Rogachevskii, I. Introduction to Turbulent Transport of Particles, Temperature and Magnetic Fields Analytical Methods for Physicists and
Engineers
Cambridge University Press: Cambridge, UK, 2021. [CrossRef]
15. Ahmed, J. Rheology and Rheological Measurements
Wiley: Hoboken, NJ, USA, 2021. [CrossRef]
16. Jorge, O. Particle-Laden Turbulent Pipe Flows
OmniScriptum GmbH Co.: Riga, Latvia, 2017.
17. Minier, J.P.
Pozorski, J. Particles inWall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration
Springer International
Publishing: Cham, Switzerland, 2017
p. 261. [CrossRef]
18. Soo, S.L. Instrumentation for Fluid Particle Flow
University Press of Mississippi: Jackson, MS, USA, 2013.
19. Silva, R. Experimental characterization techniques for solid-liquid slurry flows in pipelines: A Review. Processes 2022, 10, 597.
[CrossRef]
20. Mallach, M.
Gevers, M.
Gebhardt, P.
Musch, T. Fast and precise soft-field electromagnetic tomography systems for multiphase
flow imaging. Energies 2018, 11, 1199. [CrossRef]
21. Ahmadi, F.
Ebrahimian, M.
Sanders, R.S.
Ghaemi, S. Particle image and tracking velocimetry of solid-liquid turbulence in a
horizontal channel flow. Int. J. Multiph. Flow 2019, 112, 83–99. [CrossRef]
22. Hampel, U.
Barthel, F.
Bieberle, A.
Bieberle, M.
Boden, S.
Franz, R.
Neumann-Kipping, M.
Tas-Köhler, S. Tomographic
Imaging of Two-Phase Flow. Int. J. Adv. Nucl. React. Des. Technol. 2020, 2, 86–92. [CrossRef]
23. Zou, J.
Liu, C.
Wang, H.
Wu, Z.P. Mass Flow Rate Measurement of bulk solids based on microwave tomography and microwave
Doppler methods. Powder Technol. 2020, 360, 112–119. [CrossRef]
24. Yianneskis, M.
Whitelaw, J.H. Velocity characteristics of pipe and jet flows with high particle concentration. ASME Symp. Liq.
Solid Flows Eros. Wear Ind. Equip. 1983, 13, 12–15.
25. Chen, R.C.
Kadambi, J.R. Discrimination between solid and liquid velocities in slurry flow using Doppler Velocimeter. ASME
Powder Technol. 1995, 85, 127–134. [CrossRef]
26. Lv, Y.
Su, X.
Yang, H.
Zhang, J.
Wang, R.
Zhu, Z. Velocity slip in a deep-sea slurry pump and its effect on particle transportation.
J. Appl. Fluid Mech. 2023, 16, 1654–1665. [CrossRef]
27. Nouri, J.M.
Whitelaw, J.H.
Yianneskis, M. Particle motion and turbulence in dens two-phase flows. Int. J. Multiph. Flow 1987, 13,
729–739. [CrossRef]
28. Schreck, S.
Kleis, S.J. Modification of grid-generated turbulence by solid particles. J. Fluid Mech. 1993, 249, 665–688. [CrossRef]
29. Chen, R.C.
Kadambi, J.R. Experimental and numerical studies of solid-liquid pipe flow. ASME. Liq. Solid Flows 1994, 189, 123–135.
Available online: https://www.osti.gov/biblio/110079 (accessed on 3 September 2023).
30. Gai, G.
Hadjadj, A.
Kudriakov, S.
Thomine, O. Particles-induced turbulence: A critical review of physical concepts, numerical
modeling and experimental investigations. Theor. Appl. Mech. Lett. 2020, 10, 241–248. [CrossRef]
31. Gore, R.A.
Crowe, C.T. Modulation of turbulence by a dispersed phase. J. Fluid Eng. 1991, 113, 304–307. [CrossRef]
32. Jianren, F.
Junmei, S.
Youqu, Z.
Kefa, C. The effect of particles on fluid turbulence in a turbulent boundary layer over a cylinder.
Acta Mech. Sin. 1997, 13, 36–43. [CrossRef]
33. Eaton, J.K.
Paris, A.D.
Burton, T.M. Local distortion of turbulence by dispersed particles. AIAA 2012, AIAA-99–3643. [CrossRef]
34. Fessler, J.R.
Eaton, J.K. Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech. 1999, 394, 97–117.
[CrossRef]
35. Li, D.
Luo, K.
Fan, J. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer.
J. Fluid Mech. 2016, 802, 359–394. [CrossRef]
36. Matousek, V. Research developments in pipeline transport of settling slurries. Powder Technol. 2005, 156, 43–51. [CrossRef]
37. Javed, K.
Vaezi, M.
Kurian, V.
Kumar, A. Frictional behaviour of wheat straw-water suspensions in vertical upward flows.
Biosyst. Eng. 2021, 212, 30–45. [CrossRef]
38. Javed, K.
Kurian, V.
Kumar, A. The effect of particle size and concentration on the frictional behavior of vertical upward flows of
wheat straw aqueous slurries. Chem. Eng. Res. Des. 2022, 186, 614–627. [CrossRef]
39. Nasr-El-Din, H.
Shook, C.A.
Colwell, J. The lateral variation of solids concentration in horizontal slurry pipeline flow. Int. J.
Multiph. Flow 1987, 13, 661–670. [CrossRef]
40. Sumner, R.J. Concentration Variations and Their Effects in Flowing Slurries and Emulsions. Ph.D. Thesis, University of
Saskatchewan, Saskatoon, SK, Canada, 1992.
41. Eaton, J.K.
Fessler, J.R. Preferential concentration of particles by turbulence. Int. J. Multiph. Flow 1994, 20, 169–209. [CrossRef]
42. Eskin, D.
Miller, M.J. A model of non-Newtonian slurry flow in a fracture. Powder Technol. 2008, 182, 313–322. [CrossRef]
43. Silva, R.
Garcia, F.A.P.
Faia, P.M.G.M.
Rasteiro, M.G. Settling suspensions flow modelling: A Review. KONA Powder Part. J.
2015, 32, 41–56. [CrossRef]
44. Cotas, C.
Asendrych, D.
Garcia, F.
Faia, P.
Rasteiro, M.G. COST Action FP1005. In Proceedings of the Final Conference
EUROMECH Colloquium 566, Trondheim, Norway, 9–11 June 2015
pp. 31–33.
45. Chang, K.C.
Hsieh,W.D.
Chen, C.S. A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe
expansion. J. Fluids Eng. 1995, 117, 417–423. [CrossRef]
46. Bartosik, A. Mathematical modelling of slurry flow with medium solid particles. In Proceedings of the 2nd International
Conference on Mathematical Models for Engineering Science, Puerto de la Cruz, Spain, 10–12 December 2011
pp. 124–129.
47. Cieslinski, J. Numerical modelling of forced convection of nanofluids in smooth, round tubes: A review. Energies 2022, 15, 7586.
[CrossRef]
48. Abidi, A.
Sajadi, S.M. Impact of fin and hybrid nanofluid on hydraulic-thermal performance and entropy generation in a solar
collector using a two-phase approach. Eng. Anal. Bound. Elem. 2023, 156, 311–320. [CrossRef]
49. Bordet, A.
Poncet, S.
Poirier, M.
Galanis, N. Advanced numerical modeling of turbulent ice slurry flows in a straight pipe. Int. J.
Therm. Sci. 2018, 127, 294–311. [CrossRef]
50. Hassaan, A.M. Comparing the performance of using nanofluids in two different types of heat exchangers with the same heat
transfer area. Heat Transf. Res. 2023, 54, 1–16. [CrossRef]
51. Mandal, D.K.
Hazra, A.
Biswas, N. Effect of particle size on fluid flow and heat transfer in a pipe with slurry flow. IOP Conf. Ser.
Mater. Sci. Eng. 2021, 1080, 012026. [CrossRef]
52. Harada, E.
Toda, M.
Kuriyama, M.
Konno, H. Heat transfer between wall and solid-water suspension flow in horizontal pipes.
J. Chem. Eng. 1985, 18, 33–38. [CrossRef]
53. Iqbal, M.
Kouloulias, K.
Sergis, A.
Hardalupas, Y. Critical analysis of thermal conductivity enhancement of alumina–water
nanofluids. J. Therm. Anal. Calorim. 2023, 148, 9361–9389. Available online: https://link.springer.com/article/10.1007/s10973-0
23-12334-7 (accessed on 14 July 2023). [CrossRef]
54. Hetsroni, G.
Rozenblit, R. Heat transfer to a solid-liquid mixture in a flume. Int. J. Multiph. Flow 1994, 20, 671–689. [CrossRef]
55. Rozenblit, R.
Simkhis, M.
Hetsroni, G.
Taitel, Y. Heat transfer in horizontal solid-liquid pipe flow. Int. J. Multiph. Flow 2000, 26,
1235–1246. [CrossRef]
56. Bhanvase, B.
Barai, D. Nano Fluid for Heat and Mass Transfer—Fundamentals. Sustainable Manufacturing and Applications
Academic
Press in an imprint Elsevier: London, UK, 2021
p. 448. Available online: https://www.elsevier.com/books-and-journals
(accessed on 30 April 2021).
57. Permanasari, A.A.
Faridi, A.F.
Sukarni, S.
Puspitasari, P.
Mohamed, N.M.
Pratama, M.M.A. Heat transfer characteristics on
shell and tube heat exchanger using TiO2/water-ethylene glycol nanofluid. AIP Conf. Proc. 2023, 2748, 020048. [CrossRef]
58. Firdaus, D.R.
Permanasari, A.A.
Sukarni, S.
Puspitasari, P. Heat transfer performance of DWCNTs nanofluids in shell and tube
heat exchanger with segmental baffle. AIP Conf. Proc. 2023, 2687, 040023. [CrossRef]
59. Sattar, E.A.
Ouda, A.A.
Salman, M.D. Enhancement heat transfer in shell and tube heat exchanger by used hybrid and nanofluid.
AIP Conf. Proc. 2023, 2787, 030006. [CrossRef]
60. Wang, X.
Xu, X.
Choi, S.U.S. Thermal conductivity of nanoparticle—fluid mixture. J. Thermophys. Heat Transfer. 1999, 13, 474–480.
[CrossRef]
61. Lotfi, R.
Saboohi, Y.
Rashidi, A.M. Numerical study of forced convective heat transfer of nanofluids: Comparison of different
approaches. Int. Commun. Heat Mass Transf. 2010, 37, 74–78. [CrossRef]
62. Mokmeli, A.
Saffar-Avval, M. Prediction of nanofluid convective heat transfer using the dispersion model. Int. J. Therm. Sci. 2010,
49, 471–478. [CrossRef]
Shook, C.A.
Bartosik, A.S. The pseudohomogeneous flow approximation for dispersed two-phase systems. Part. Sci. Tech. 1991,
9, 119–134. [CrossRef]
64. Boussinesque, J. Theorie de l’ecoulement tiurbillant. Mem. Acad. Sci. 1877, 23, 46.
65. Blom, J. Experimental determination of the turbulent Prandtl number in a developing temperature boundary layer. In Proceedings
of the 4th International Conference Heat Transfer, Paris, France, 31 August–5 September 1970
Volume VII.
66. Launder, B.E.
Sharma, B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning
disc. Lett. Heat Mass Transfer. 1974, 1, 131–138. Available online: https://www.sciencedirect.com/science/article/abs/pii/009445
4874901507 (accessed on 7 August 2021). [CrossRef]
67. Mathur, S.
He, S. Performance and implementation of the Launder–Sharma low-Reynolds number turbulence model. Comput.
Fluids 2013, 79, 134–139. [CrossRef]
68. Lawn, C.J. The determination of the rate of dissipation in turbulent pipe flow. J. Fluid. Mech. 1971, 48, 477–505. [CrossRef]
69. Cotas, C.
Asendrych, D.
Garcia, F.A.P.
Fala, P.
Rasteiro, M.G. Turbulent flow of concentrated pulp suspensions in a
pipe—Numerical study based on a pseudo-homogeneous approach. In Proceedings of the COST Action FP1005 Final Conference,
EUROMECH Colloquium 566, Trondheim, Norway, 9–11 June 2015
Available online: https://www.researchgate.net/
publication/283342328 (accessed on 7 August 2021).
70. Cotas, C.
Silva, R.
Garcia, F.
Faia, P.
Asendrych, D.
Rasteiro, M.G. Application of different low-Reynolds k-" turbulence models
to model the flow of concentrated pulp suspensions in pipes. Procedia Eng. 2015, 102, 1326–1335. [CrossRef]
71. Abir, I.A.
Emin, A.M. A comparative study of four low-Reynolds-number k-e turbulence models for periodic fully developedduct
flow and heat transfer. Numer. Heat Transf. Part B Fundam. 2016, 69, 234–248.
72. Bartosik, A. Validation of friction factor predictions in vertical slurry flows with coarse particles. J. Hydrol. Hydromech. 2020, 68,
119–127. [CrossRef]
73. Jones, T. Advances in Slurry Technology. In Chapter: Numerical Modelling of Medium Slurry Flow in a Vertical Pipeline
IntechOpen:
London, UK, 2023
pp. 1–19. [CrossRef]
74. Roache, P.J. Computational Fluid Dynamics
Hermosa Publishing: Albuquerque, NM, USA, 1982.
75. Nikuradse, J. Unyersuchungen über die geshwindigkeitsverteilung in turbulenten strömungen. Aeronaut. J. 1927, 31, 1170.
[CrossRef]
76. Hermandes-Peres, V.
Abdulkadir, M.
Azzopardi, B.J. Grid generation issues in the CFD modelling of two-phase flow in a pipe.
J. Comput. Multiph. Flows. 2011, 3, 1–26. [CrossRef]
77. Dittus, F.W.
Boelter, L.M.K. Heat transfer in automobile radiators of the tubular type. Int. Comm. Heat Mass Transfer. 1985, 12,
3–22. [CrossRef]
78. Charles, M.E.
Charles, R.A. Advances in Solid-Liquid Flow and Its Applications
Pergamon Press: New York, NY, USA, 1971
Available
online: https://www.elsevier.com/books/advances-in-solid-liquid-flow-in-pipes-and-its-application/zandi/978-0-08-015767-2
(accessed on 3 September 2023).
79. Ghosh, T.
Shook, C.A. Freight pipelines. In Freight Pipelines
Liu, H., Round, G.F., Eds.
Hemisphere: Washington, DC, USA, 1990
pp. 281–288.
80. Talmon, A.M. Analytical model for pipe wall friction of pseudo-homogenous sand slurries. Part. Sci. Tech. 2013, 31, 264–270.
[CrossRef]
81. Li, M.-Z.
He, Y.-P.
Liu, W.-H.
Liu, Y.-D.
Huang, C.
Jiang, R.-H. Effect of adding finer particles on the transport characteristics of
coarse-particle slurries in pipelines. Ocean Eng. 2018, 2020, 108160. [CrossRef]