Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Nie podano kosztów publikacji ! (W celu uzupełnienia skontaktuj się z Dyrektorem Dyscypliny) [123690] Artykuł: Application of Wear-Resistant Nanostructures Formed by Ion Nitridizing & Electrospark Alloying for Protection of Rolling Bearing Seat Surfaces(Zastosowanie odpornych na zużycie nanostruktur utworzonych przez azotowanie jonowe i stapianie elektroiskrowe do ochrony powierzchni gniazd łożysk tocznych)Czasopismo: Proceedings of the 2022 IEEE 12th International Conference "Nanomaterials: Applications and Properties", NAP 2022 Strony: 1-10 Opublikowano: Wrzesień 2022 Liczba arkuszy wydawniczych: 0.50 Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Recenzowany referat w materiałach konferencyjnych w języku angielskim Punkty MNiSW: 0 DOI Słowa kluczowe: aluminiowanie  stapianie elektroiskrowe  azotowanie jonowe  mikrotwardość  łożysko toczne  chropowatość  czop łożyska wału  jakość powierzchni  zużycie  Keywords: aluminizing  electrospark alloying  ion nitriding  microhardness  rolling bearing  roughness  shaft bearing journal  sleeve  surface quality  wear  |
The paper analyzes the works devoted to solving problems affecting the bearing life of rolling bearings (RB) and to revealing reserves for its increase. There proposed a new technology for forming a protective coating on the shaft bearing journal or on the surface of a sleeve pressed thereon, which consists in the use of a combined technology comprising a process for stage-by-stage aluminizing by the method of electrospark alloying (AESA) followed by a process of ion nitriding (IN). Such a coating has a 100% continuity, the greatest thickness of the increased hardness zone of 300 μm, the surface microhardness of 7700 MPa, and the roughness (Ra) after non-abrasive ultrasonic finishing (NAUF) of 0.5 μm, The results of the X-ray microanalysis indicate that an increased content of aluminum is observed in the surface layer at the distance of up to 40 μm after the stage-by-stage AESA process. The research results have shown that in order to restore the shaft bearing journal neck surface layer hardness, which had been lost because of the repair work, the step-by-step AESA technology is more preferable. Thus, when removing the surface layer to a depth of 0.15 mm and subsequently carburizing by the method of electrospark alloying (CESA), the maximum microhardness of the surface layer is 7250 MPa, and the thickness of the zone of the increased hardness is 150 μm, At subsequently processing by the AESA method, these quality parameters of the surface layer are, respectively, 7350 MPa and 210 μm. The use of the NAUF method, both after CESA and AESA processes, makes it possible to reduce the surface roughness up to Ra = 0.5 μm. To decrease the surface roughness of the RB housing seat, it is advisably to practice burnishing with a diamond tool (DB) after the AESA process.