Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[122900] Rozdział:

Application of thermal and cavitation effect for heat and mass transfer process intensification in multicomponent liquid media

w książce:   Heat Transfer and Heat Recovery Systems
ISBN:  978-3-0365-7369-4
Wydawca:  MDPI
Opublikowano: 2023
Liczba stron:  21
Liczba arkuszy wydawniczych:  1.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Anatoliy Pavlenko orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka502.502.50  
Hanna Koshlak orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka502.502.50  

Grupa MNiSW:  Autorstwo rozdziału w monografii spoza listy wydawnictw 2019
Punkty MNiSW: 5


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

breaking  desorption  force  speed  acceleration  pressure  dispersed phase 



Abstract:

In this paper, the authors consider the processes of dynamic interaction between the boiling
particles of the dispersed phase of the emulsion leading to the large droplet breakup. Differences in
the consideration of forces that determine the breaking of non-boiling and boiling droplets have been
indicated in the study. They have been determined by the possibility of using the model to define the
processes of displacement, deformation, or fragmentation of the inclusion of the dispersed phase
under the influence of a set of neighboring particles. The dynamics of bubbles in a compressible
liquid with consideration for interfacial heat and mass transfer has also been analyzed in the paper.
The effect of standard and system parameters on the intensity of cavitation processes is considered.
Physical transformations during the cavitation treatment of liquid are caused not only by shock waves
and radiated pressure pulses but also by extreme thermal effects. At the stage of ultimate bubble
compression, vapor inside the bubble and the liquid in its vicinity transform into the supercritical
fluid state. The model analyzes microflow features in the inter-bubble space and quantitatively
calculates local values of the velocity and pressure fields, as well as dynamic effects.



B   I   B   L   I   O   G   R   A   F   I   A
1. Fuster, D.
Dopazo, C.
Hauke, G. Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc.
Am. 2011, 129, 122–131. [CrossRef] [PubMed]
2. Albanese, L.
Ciriminna, R.
Meneguzzo, F.
Pagliaro, M. Energy efficient inactivation of Saccharomyces cerevisiae via controlled
hydrodynamic cavitation. Energy Sci. Eng. 2015, 3, 221–238. [CrossRef]
3. Zevnik, J.
Dular, M. Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrason. Sonochem. 2020,
69, 105252. [CrossRef]
4. Gogate, P.R.
Pandit, A.B. Engineering design methods for cavitation reactors II: Hydrodynamic cavitation. AIChE J. 2000, 46,
1641–1649. [CrossRef]
5. Kanthale, P.M.
Gogate, P.R.
Pandit, A.B. Dynamics of gravitational bubbles and design of a hydrodynamic cavitational reactor
Ultrason. Sonochem. 2005, 12, 441–452. [CrossRef] [PubMed]
6. Li, J.
Cheng, P. Bubble cavitation in a microchannel. Int. J. Heat Mass Transf. 2004, 47, 2689–2698. [CrossRef]
7. Melikhov, V.
Yakush, S.
Le, T. Evaluation of energy and impulse generated by superheated steam bubble collapse in subcooled
water. Nucl. Eng. Des. 2020, 366, 110753. [CrossRef]
8. Roesle, M.
Kulacki, F. An experimental study of boiling in dilute emulsions, part A: Heat transfer. Int. J. Heat Mass Transf. 2012,
55, 2160–2165. [CrossRef]
9. Podnar, A.
Dular, M.
Sirok, B.
Hocevar, M. Experimental Analysis of Cavitation Phenomena on Kaplan Turbine Blades Using
Flow Visualization. J. Fluids Eng. 2019, 141, 071101. [CrossRef]
10. Chernin, L.
Val, D.V. Probabilistic prediction of cavitation on rotor blades of tidal stream turbines. Renew. Energy 2017, 113,
688–696. [CrossRef]
11. Pham-Thanh, N.
Van Tho, H.
Yum, Y.J. Evaluation of cavitation erosion of a propeller blade surface made of composite materials.
J. Mech. Sci. Technol. 2015, 29, 1629–1636. [CrossRef]
12. Dietzel, D.
Hitz, T.
Munz, C.-D.
Kronenburg, A. Expansion Rates of Bubble Clusters in Superheated Liquids. In Proceedings of
the Germany ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, Valencia, Spain, 6–8 September
2017. [CrossRef]
13. Warjito, W.
Budiarso, B.
Syahputra, M.F.
Nasution, S.B. The Effect of Blades Gap on Propeller Openflume Picohydro Turbine
Performance. Int. J. Fluid Mach. Syst. 2021, 14, 122–131. [CrossRef]
14. Tran, B.N.
Jeong, H.
Kim, J.-H.
Park, J.-S.
Yang, C. Effects of Tip Clearance Size on Energy Performance and Pressure Fluctuation
of a Tidal Propeller Turbine. Energies 2020, 13, 4055. [CrossRef]
15. Adhikari, R.C.
Vaz, J.
Wood, D. Cavitation Inception in Crossflow Hydro Turbines. Energies 2016, 9, 237. [CrossRef]
16. Janssen, D.
Kulacki, F. Flow boiling of dilute emulsions. Int. J. Heat Mass Transf. 2017, 115, 1000–1007. [CrossRef]
17. Ganesan, B.
Martini, S.
Solorio, J.
Walsh, M.K. Determining the Effects of High Intensity Ultrasound on the Reduction of
Microbes in Milk and Orange Juice Using Response Surface Methodology. Int. J. Food Sci. 2015, 2015, 1–7. [CrossRef]
18. Chandrapala, J.
Oliver, C.
Kentish, S.
Ashokkumar, M. Ultrasonics in food processing – Food quality assurance and food safety.
Trends Food Sci. Technol. 2012, 26, 88–98. [CrossRef]
19. Sun, X.
Chen, S.
Liu, J.
Zhao, S.
Yoon, J.Y. Hydrodynamic Cavitation: A Promising Technology for Industrial-Scale Synthesis of
Nanomaterials. Front. Chem. 2020, 8, 259. [CrossRef]
20. Prajapat, A.L.
Gogate, P.R. Depolymerization of carboxymethyl cellulose using hydrodynamic cavitation combined with
ultraviolet irradiation and potassium persulfate. Ultrason. Sonochem. 2019, 51, 258–263. [CrossRef] [PubMed]
21. Merzkirch, W.
Rockwell, D.
Tropea, C. Orifice Plates and Venturi Tubes
Springer International Publishing: Cham, Switzerland

Heidelberg, Germany
New York, NY, USA
Dordrecht, The Netherlands
London, UK, 2015. Available online: https://link.
springer.com/content/pdf/bfm%3A978-3-319-16880-7%2F1.pdf (accessed on 17 July 2015).
22. Nigmatulin, R.I.
Taleyarkhan, R.P.
Lahey, R.T. Evidence for nuclear emissions during acoustic cavitation revisited. Proc. Inst.
Mech. Eng. Part A J. Power Energy 2004, 218, 345–364. [CrossRef]
23. Sun, X.
Wang, Z.
Xuan, X.
Ji, L.
Li, X.
Tao, Y.
Boczkaj, G.
Zhao, S.
Yoon, J.Y.
Chen, S. Disinfection characteristics of an
advanced rotational hydrodynamic cavitation reactor in pilot scale. Ultrason. Sonochem. 2021, 73, 105543. [CrossRef] [PubMed]
24. Albanese, L.
Baronti, S.
Liguori, F.
Meneguzzo, F.
Barbaro, P.
Vaccari, F.P. Hydrodynamic cavitation as an energy efficient
process to increase biochar surface area and porosity: A case study. J. Clean. Prod. 2019, 210, 159–169. [CrossRef]
25. Badve, M.
Alpar, T.
Pandit, A.B.
Gogate, P.R.
Csoka, L. Modeling the shear rate and pressure drop in a hydrodynamic cavitation
reactor with experimental validation based on KI decomposition studies. Ultrason. Sonochem. 2015, 22, 272–277. [CrossRef]
26. Pavlenko, A. Dispersed phase breakup in boiling of emulsion. Heat Transf. Res. 2018, 49, 633–641. [CrossRef]
27. Pavlenko, A. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Sci. Eng. Prog. 2019, 15, 1–8.
[CrossRef]
28. Gasanov, B.M.
Bulanov, N.V. Effect of the droplet size of an emulsion dispersion phase in nucleate boiling and emulsion boiling
crisis. Int. J. Heat Mass Transf. 2015, 88, 256–260. [CrossRef]
29. Roesle, M.L.
Lunde, D.L.
Kulacki, F.A. Boiling Heat Transfer to Dilute Emulsions from a Vertical Heated Strip. J. Heat Transf.
2015, 137, 8. [CrossRef]
30. Rozentsvaig, A.K.
Strashinskii, C.S. The Growth of Vapor Bubbles in the Volume of Superheated Drops, Dispersed in High-Boiling
Liquid. Appl. Math. Sci. 2014, 8, 7519–7528. [CrossRef]
31. Rozentsvaig, A.K.
Strashinskii, C.S. Regimes of Heat Transfer during Boiling Emulsions with Low-Temperature Dispersed Phase.
Appl. Math. Sci. 2015, 9, 5593–5601. [CrossRef]
32. Califano, V.
Calabria, R.
Massoli, P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena
for water-in-oil emulsions. Fuel 2015, 117, 87–94. [CrossRef]
33. Mura, E.
Massoli, P.
Josset, C.
Loubar, K.
Bellettre, J. Study of the micro-explosion temperature of water in oil emulsion droplets
during the Leidenfrost effect. Exp. Therm. Fluid Sci. 2012, 43, 63–70. [CrossRef]
34. Aktershev, S.P.
Ovchinnikov, V.V. Modelling of boiling up of a metastable liquid with appearance of the evaporation fronts. Mod.
Sci. Res. Ideas Results Technol. 2013, 1, 77–82.
35. Shinjo, J.
Xia, J.
Megaritis, A.
Ganippa, L.C.
Cracknell, R.F. Modeling temperature distribution inside an emulsion fuel droplet
under convective heating: A key to predicting microexplosion and puffing. At. Sprays 2016, 26, 551–583. [CrossRef]
36. García, M.C.
Gucker, S.N.
Foster, J.E. Understanding the plasma and power characteristics of a self-generated steam bubble
discharge. J. Phys. D Appl. Phys. 2015, 48, 355203. [CrossRef]
37. Feng, J.
Muradoglu, M.
Kim, H.
Ault, J.T.
Stone, H.A. Dynamics of a bubble bouncing at a liquid/liquid/gas interface. J. Fluid
Mech. 2016, 807, 324–352. [CrossRef]
38. Pavlenko, A.M. Change of emulsion structure during heating and boiling. Int. J. Energy Clean Environ. 2019, 20, 291–302.
[CrossRef]