Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[122760] Artykuł:

Application of Enterprise Architecture and Artificial Neural Networks to Optimize the Production Process

Czasopismo: Electronics   Strony: 1-22
ISSN:  2079-9292
Opublikowano: 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Zbigniew Juzoń orcid logo WEAiIKatedra Informatyki StosowanejNiespoza "N" jednostkiAutomatyka, elektronika, elektrotechnika i technologie kosmiczne2546.67.00  
Jarosław Wikarek orcid logo WEAiIKatedra Informatyki StosowanejTakzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne2546.6770.00  
Paweł Sitek orcid logo WEAiIKatedra Informatyki StosowanejTakzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne2546.6770.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

enterprise architecture  production optimization  meta-model  mathematical programming  ANN 



Abstract:

Production optimization is a complex process because it must take into account various resources of the company and its environment. In this process, it is necessary to consider the enterprise as a whole, taking into account the interaction between its key elements, both in the technological and business layer. For this reason, the article proposes the use of enterprise architecture, which facilitates the interaction of these layers in the production optimization process. As a result, a proprietary meta-model of enterprise architecture was presented, which, based on good practices and the assumptions of enterprise architecture, facilitates the construction of detailed optimization models in the area of planning, scheduling, resource allocation, and routing. The production optimization model formulated as a mathematical programming problem is also presented. The model was built taking into account the meta-model. Due to the computational complexity of the optimization model, a method using an artificial neural network (ANN) was proposed to estimate the potential result based on the structure of the model and a given data instance before the start of optimization. The practical application of the presented approach has been shown based on the example of optimization of the production of an exemplary production cell where the cost of storage and the number of unfulfilled orders and maintenance are optimized.