Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[121810] Artykuł:

Stiffness Evaluation of Laboratory and Plant Produced Foamed Bitumen Warm Asphalt Mixtures with Fiber Reinforcement and Bio-Flux Additive

Czasopismo: Materials  
ISSN:  1996-1944
Opublikowano: Luty 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Marek Iwański orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport1335.0046.66  
Anna Chomicz-Kowalska orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport1335.0046.66  
Krzysztof Maciejewski orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport1335.0046.66  
Karolina Janus WBiAKatedra Inżynierii KomunikacyjnejNiedoktorant szkoły doktorskiejInżynieria lądowa, geodezja i transport1335.00.00  
Piotr Radziszewski Niespoza "N" jednostki13.00.00  
Adam Liphardt Niespoza "N" jednostki13.00.00  
Maciej Michalec Niespoza "N" jednostki013.00.00  
Karol Góral Niespoza "N" jednostki013.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

WMA  foamed bitumen  Bio-Flux  complex stiffness modulus  plant production  highly modified bitumen  polymer modified bitumen  high stiffness modulus asphalt concrete  surface course 



Abstract:

The present paper investigates the viscoelastic stress-strain responses of laboratory and plant produced warm mix asphalt mixtures containing basalt fiber dispersed reinforcement. The investigated processes and mixture components were evaluated for their efficacy in producing highly performing asphalt mixtures with decreased mixing and compaction temperatures. Surface course asphalt concrete (AC-S 11 mm) and high modulus asphalt concrete (HMAC 22 mm) conventionally and using a warm mix asphalt technique with foamed bitumen and a bio-derived fluxing additive. The warm mixtures included lowered production temperature (by 10 °C) and lowered compaction temperatures (by 15 °C and 30 °C). The complex stiffness moduli of the mixtures were assessed under cyclic loading tests at combinations of four temperatures and five loading frequencies. It was found that the warm produced mixtures were characterized by lower dynamic moduli than the reference mixtures in the whole spectrum of loading conditions, however, the mixtures compacted at the 30 °C lower temperature performed better than the mixtures compacted at 15 °C lower temperature, specifically when highest testing temperatures are considered. The differences in the performance of plant and laboratory produced mixtures were ascertained to be nonsignificant. It was concluded that the differences in stiffness of hot mix and warm mixtures can be attributed to the inherent properties of foamed bitumen mixtures and that these differences should shrink in time.



B   I   B   L   I   O   G   R   A   F   I   A
OECD. Transport Bridging Divides
OECD Urban Studies
OECD: Paris, France, 2020
ISBN 9789264747067. [Google Scholar]
Banerjee, A.
Duflo, E.
Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 2020, 145. [Google Scholar] [CrossRef][Green Version]
Varjan, P.
Rovňaníková, D.
Gnap, J. Examining Changes in GDP on the Demand for Road Freight Transport. Procedia Eng. 2017, 192, 911–916. [Google Scholar] [CrossRef]
Danesi, A.
Ongari, D.
Poliziani, C.
Rupi, F. Evolution of the road and rail transport of goods in european countries before and after the financial crises. Commun.-Sci. Lett. Univ. Žilina 2019, 21, 3–12. [Google Scholar] [CrossRef]
Elem, A.
Ejem, B. Estimating the Relationship Between Gdp and Freight Transport Volumes in Ecowas Nations. Int. J. Geogr. Reg. Plan. Res. 2020, 5, 39–49. [Google Scholar]
Chomicz-Kowalska, A.
Maciejewski, K.
Iwański, M.M.
Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Polish Acad. Sci. Tech. Sci. 2021. [Google Scholar] [CrossRef]
Woszuk, A.
Panek, R.
Madej, J.
Zofka, A.
Franus, W. Mesoporous silica material MCM-41: Novel additive for warm mix asphalts. Constr. Build. Mater. 2018, 183, 270–274. [Google Scholar] [CrossRef]
Zhang, Y.
Leng, Z.
Zou, F.
Wang, L.
Chen, S.S.
Tsang, D.C.W. Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt. J. Clean. Prod. 2018, 172, 686–695. [Google Scholar] [CrossRef]
Ahmadzadegan, F.
Sarkar, A. Mechanical properties of warm mix asphalt-stone matrix asphalt modified with nano zeolite material. J. Test. Eval. 2022, 50, 20200595. [Google Scholar] [CrossRef]
Yin, F.
Arambula, E.
Newcomb, D.E. Effect of water content on binder foaming characteristics and foamed mixture properties. Transp. Res. Rec. 2015, 2506, 1–7. [Google Scholar] [CrossRef]
Iwański, M.
Chomicz-Kowalska, A.
Mazurek, G.
Buczyński, P.
Cholewińska, M.
Iwański, M.M.
Maciejewski, K.
Ramiączek, P. Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials 2021, 14, 2803. [Google Scholar] [CrossRef]
Behnood, A. A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. J. Clean. Prod. 2020, 259, 120817. [Google Scholar] [CrossRef]
Polo-Mendoza, R.
Peñabaena-Niebles, R.
Giustozzi, F.
Martinez-Arguelles, G. Eco-friendly design of Warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Constr. Build. Mater. 2022, 326, 126890. [Google Scholar] [CrossRef]
Wu, S.
Zhang, W.
Shen, S.
Muhunthan, B. Field Performance of Foaming Warm Mix Asphalt Pavement. Transp. Res. Rec. 2019, 2673, 281–294. [Google Scholar] [CrossRef]
Chomicz-Kowalska, A.
Gardziejczyk, W.
Iwański, M.M. Moisture resistance and compactibility of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen. Constr. Build. Mater. 2016, 126. [Google Scholar] [CrossRef][Green Version]
West, R.
Rodezno, C.
Julian, G.
Prowell, B.
Frank, B.
Osborn, L.V.
Kriech, T. Field Performance of Warm Mix Asphalt Technologies
National Academies: Washington, DC, USA, 2014. [Google Scholar]
Yin, F.
Arámbula-Mercado, E.
Newcomb, D. Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties. Int. J. Pavement Eng. 2017, 18, 358–366. [Google Scholar] [CrossRef]
Maciejewski, K.
Chomicz-Kowalska, A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials 2021, 14, 2055. [Google Scholar] [CrossRef] [PubMed]
Iwański, M.
Mazurek, G.
Buczyński, P.
Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2021, 266, 121231. [Google Scholar] [CrossRef]
Maciejewski, K.
Ramiaczek, P.
Remisova, E. Effects of short-term ageing temperature on conventional and high-temperature properties of paving-grade bitumen with anti-stripping and wma additives. Materials 2021, 14, 6229. [Google Scholar] [CrossRef]
Pucułek, M.
Liphardt, A.
Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2021, 67, 557–570. [Google Scholar] [CrossRef]
Król, J.B.
Niczke, Ł.
Kowalski, K.J. Towards understanding the polymerization process in Bitumen bio-fluxes. Materials 2017, 10, 1058. [Google Scholar] [CrossRef][Green Version]
Gawel, I.
Pilat, J.
Radziszewski, P.
Niczke, L.
Krol, J.
Sarnowski, M. Bitumen fluxes of vegetable origin. Polimery/Polymers 2010, 55, 55–60. [Google Scholar] [CrossRef][Green Version]
Somé, S.C.
Gaudefroy, V.
Delaunay, D. Effect of vegetable oil additives on binder and mix properties: Laboratory and field investigation. Mater. Struct. Constr. 2016, 49, 2197–2208. [Google Scholar] [CrossRef]
Rasman, M.
Hassan, N.A.
Hainin, M.R.
Putra Jaya, R.
Haryati, Y.
Shukry, N.A.M.
Abdullah, M.E.
Kamaruddin, N.H.M. Engineering properties of bitumen modified with bio-oil. MATEC Web Conf. 2018, 250. [Google Scholar] [CrossRef]
Elahi, Z.
Jakarni, F.M.
Muniandy, R.
Hassim, S.
Ab Razak, M.S.
Ansari, A.H.
Ben Zair, M.M. Waste cooking oil as a sustainable bio modifier for asphalt modification: A review. Sustainability 2021, 13, 1506. [Google Scholar] [CrossRef]
Ahmed, R.B.
Hossain, K. Waste cooking oil as an asphalt rejuvenator: A state-of-the-art review. Constr. Build. Mater. 2020, 230. [Google Scholar] [CrossRef]
Zaumanis, M.
Mallick, R.B.
Poulikakos, L.
Frank, R. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Comput. Chem. Eng. 2014, 71, 538–550. [Google Scholar] [CrossRef]
Ragni, D.
Ferrotti, G.
Lu, X.
Canestrari, F. Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Mater. Des. 2018, 160, 514–526. [Google Scholar] [CrossRef]
Hofko, B.
Cannone Falchetto, A.
Grenfell, J.
Huber, L.
Lu, X.
Porot, L.
Poulikakos, L.D.
You, Z. Effect of short-term ageing temperature on bitumen properties. Road Mater. Pavement Des. 2017, 18, 108–117. [Google Scholar] [CrossRef][Green Version]
Frigio, F.
Raschia, S.
Steiner, D.
Hofko, B.
Canestrari, F. Aging effects on recycled WMA porous asphalt mixtures. Constr. Build. Mater. 2016, 123, 712–718. [Google Scholar] [CrossRef]
Barraj, F.
Khatib, J.
Castro, A.
Elkordi, A. Effect of Chemical Warm Mix Additive on the Properties and Mechanical Performance of Recycled Asphalt Mixtures. Buildings 2022, 12, 874. [Google Scholar] [CrossRef]
Yang, S.L.
Baek, C.
Park, H.B. Effect of aging and moisture damage on fatigue cracking properties in asphalt mixtures. Appl. Sci. 2021, 11, 543. [Google Scholar] [CrossRef]
Wu, S.
Shen, S.
Zhang, W.
Muhunthan, B. Characterization of Long-term Performance of Warm Mix Asphalt in the United States. In Proceedings of the 7th Eurasphalt & Eurobitume Congress v1.0, Online, 15–17 June 2021
Foundation Eurasphalt: Madrid, Spain, 2021. [Google Scholar]
Ayberk, Ö.
Zeliha, T.
Muhammet, K.
Seyit, A.Y. Investigation of field performance of warm mix asphalt produced with foamed bitumen. In Proceedings of the 7th Eurasphalt & Eurobitume Congress v1.0, Online, 15–17 June 2021
Foundation Eurasphalt: Madrid, Spain, 2021. [Google Scholar]
Abtahi, S.M.
Sheikhzadeh, M.
Hejazi, S.M. Fiber-reinforced asphalt-concrete—A review. Constr. Build. Mater. 2010, 24, 871–877. [Google Scholar] [CrossRef]
Wu, S.
Ye, Q.
Li, N.
Yue, H. Effects of fibers on the dynamic properties of asphalt mixtures. J. Wuhan Univ. Technol. Sci. Ed. 2007, 22, 733–736. [Google Scholar] [CrossRef]
Krayushkina, K.
Prentkovskis, O.
Bieliatynskyi, A.
Gigineishvili, J.
Skrypchenko, A.
Laurinavičius, A.
Gopalakrishnan, K.
Tretjakovas, J. Perspectives on using basalt fiber filaments in the construction and rehabilitation of highway pavements and airport runways. Balt. J. Road Bridg. Eng. 2016, 11, 77–83. [Google Scholar] [CrossRef]
Kaloush, K.E.
Biligiri, K.P.
Zeiada, W.A.
Rodezno, M.C.
Reed, J.X. Evaluation of fiber-reinforced asphalt mixtures using advanced material characterization tests. J. Test. Eval. 2010, 38. [Google Scholar] [CrossRef][Green Version]
Enieb, M.
Diab, A.
Yang, X. Short- and long-term properties of glass fiber reinforced asphalt mixtures. Int. J. Pavement Eng. 2021, 22, 64–76. [Google Scholar] [CrossRef]
Alidadi, M.
Khabiri, M.M. Experimental Study on the Effect of Glass and Carbon Fibers on Physical and Micro-Structure Behavior of Asphalt. Int. J. Integr. Eng. 2016, 8, 1–8. [Google Scholar]
Ziari, H.
Orouei, M.
Divandari, H.
Yousefi, A. Mechanical characterization of warm mix asphalt mixtures made with RAP and Para-fiber additive. Constr. Build. Mater. 2021, 279. [Google Scholar] [CrossRef]
Fakhri, M.
Hosseini, S.A. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Constr. Build. Mater. 2017, 134, 626–640. [Google Scholar] [CrossRef]
Mohammed Alnadish, A.
Yusri Aman, M.
Yati Binti Katman, H.
Rasdan Ibrahim, M. Laboratory Evaluation of Fiber-Modified Asphalt Mixtures Incorporating Steel Slag Aggregates. Comput. Mater. Contin. 2022, 70, 5967–5990. [Google Scholar] [CrossRef]
WT-2 2014. Asphalt mixes. Technical Requirements. Appendix to ordinance No. 54 of the General Director of National Roads and Highways, 8.11.2014. 2014.
Iwański, M.
Chomicz-Kowalska, A.
Maciejewski, K.
Iwański, M.M.
Radziszewski, P.
Liphardt, A.
Król, J.B.
Sarnowski, M.
Kowalski, K.J.
Pokorski, P. Warm Mix Asphalt Binder Utilizing Water Foaming and Fluxing Using Bio-Derived Agent. Materials 2022, 15, 8873. [Google Scholar] [CrossRef] [PubMed]
Iwański, M.
Chomicz-Kowalska, A.
Maciejewski, K.
Iwański, M.M.
Radziszewski, P.
Liphardt, A.
Król, J.B.
Sarnowski, M.
Kowalski, K.J.
Pokorski, P. Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders. Materials 2023, 16, 513. [Google Scholar] [CrossRef]
Airey, G.D.
Rahimzadeh, B.
Collop, A.C. Viscoelastic linearity limits for bituminous materials. Mater. Struct. 2003, 36, 643–647. [Google Scholar] [CrossRef]
Jaczewski, M.
Judycki, J.
Jaskula, P. Asphalt concrete subjected to long-time loading at low temperatures – Deviations from the time-temperature superposition principle. Constr. Build. Mater. 2019, 202, 426–439. [Google Scholar] [CrossRef]
Zhang, Y.
Zhu, Y.
Wang, W.
Ning, Z.
Feng, S.
Höeg, K. Compressive and tensile stress–strain-strength behavior of asphalt concrete at different temperatures and strain rates. Constr. Build. Mater. 2021, 311. [Google Scholar] [CrossRef]
Buczyński, P.
Iwański, M. Complex modulus change within the linear viscoelastic region of the mineral-cement mixture with foamed bitumen. Constr. Build. Mater. 2018, 172, 52–62. [Google Scholar] [CrossRef]
Mazurek, G.
Iwański, M. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032029. [Google Scholar] [CrossRef]
Nur, N.I.
Chailleux, E.
Airey, G.D. A comparative study of the influence of shift factor equations on master curve construction. Int. J. Pavement Res. Technol. 2011, 4, 324–336. [Google Scholar]
Medani, T.O.
Tech, M.
Huurman, M. Constructing the Stiffness Master Curves for Asphaltic Mixes. Civ. Eng. 2003, 1–21. [Google Scholar]
Pellinen, T.K.
Witczak, M.W.
Bonaquist, R.F. Asphalt Mix Master Curve Construction Using Sigmoidal Fitting Function with Non-Linear Least Squares Optimization. In Recent Advances in Materials Characterization and Modeling of Pavement Systems
Purdue University: West Lafayette, IN, USA, 2003
pp. 83–101. [Google Scholar] [CrossRef]
Li, J.
Zofka, A.
Yut, I. Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US Region. Road Mater. Pavement Des. 2012, 13, 249–265. [Google Scholar] [CrossRef]
Singh, D.
Zaman, M.
Commuri, S. Evaluation of predictive models for estimating dynamic modulus of hot-mix asphalt in Oklahoma. Transp. Res. Rec. 2011, 57–72. [Google Scholar] [CrossRef]
Al-Khateeb, G.
Shenoy, A.
Gibson, N.
Harman, T. A new simplistic model for dynamic modulus predictions of asphalt paving mixtures. In Proceedings of the 2006 Annual Meeting of Association of Asphalt Paving Technologists, Savannah, GA, USA, 27–29 March 2006. [Google Scholar]
Hofko, B.
Blab, R.
Mader, M. Impact of air void content on the viscoelastic behavior of hot mix asphalt
Taylor and Francis Group: London, UK, 2012
pp. 139–149. [Google Scholar] [CrossRef]
Williams, S.G.
Braham, A.F. Foamed Warm Mix Asphalt Design Issues
University of Arkansas: Fayetteville, AR, USA, 2015. [Google Scholar]