Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: This article investigates the relationships between different chemical compositions of simulated cement concrete pore solutions and changes on the surface of zeolite rock with potassium clinoptilolite as its main component. The changes were studied using X-ray diffraction (XRD), thermal analysis (DTA-TG) and scanning electron microscopy (SEM). Zeolite powder samples and a ground section of 16–64 mm grain were tested. The simulated pore solutions were based on Ca, Na, K hydroxides and K2SO4. It was found that 100% of Ca(OH)2 in the systems could react between 7 and 180 days of hydration due to pozzolanic and side reactions. As the degree of clinoptilolite conversion increased, it became more difficult to detect it in X-ray patterns. At the same time, various microstructural changes could be observed. As a result of the reactions that occurred, hydrated calcium silicates, sulfate and carbonate compounds were formed. Potassium hydroxide had a more substantial effect on clinoptilolite reactivity than sodium hydroxide. This effect can be enhanced by the presence of SO23− ions in the solution.
B I B L I O G R A F I A1. Ciciszwili G.W. Zeolity Naturalne, Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 1990.
2. Handke M. Crystallochemistry of Silicates, AGH: Krakow, Poland, 2005.
3. Poon C.S., Lam L., Kou S.C., Lin Z.S. A study on the hydration rate of natural zeolite blended cement paste. Constr. Build. Mater. 1999, 13, 427–432. https://doi.org/10.1016/S0950-0618(99)00048-3.
4. Ahmadi B., Shekarchi M. Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 2010, 32, 134–141. https://doi.org/10.1016/j.cemconcomp.2009.10.006.
5. Feng N., Niu Q. Effect of modified Zeolite on the expansion of alkaline silica reaction. Cem. Concr. Res. 2005, 35, 1784–1788. https://doi.org/10.1016/j.cemconres.2004.10.030.
6. Kriptavičius D., Girskas G., Skripkiūnas G. Use of Natural Zeolite and Glass Powder Mixture as Partial Replacement of Portland Cement: The Effect on Hydration, Properties and Porosity. Materials 2022, 15, 4219. https://doi.org/10.3390/ma15124219.
7. Ogrodnik P., Rutkowska G., Szulej J., Żółtowski M., Powęzka A., Badyda A. Cement Mortars with Addition of Fly Ash from Thermal Transformation of Sewage Sludge and Zeolite. Energies 2022, 15, 1399. https://doi.org/10.3390/en15041399.
8. Yu Z., Yang W., Zhan P., Liu X., Chen D. Strengths, Microstructure and Nanomechanical Properties of Concrete Containing High Volume of Zeolite Powder. Materials 2020, 13, 4191. https://doi.org/10.3390/ma13184191.
9. Kłapyta Z., Żabiński W. Mineral Sorbents of Poland, AGH: Krakow, Poland, 2008.
10. Kurdowski W. Cement and Concrete Chemistry, Springer: London, UK, 2014.
11. Ramachandran V.S.,Paroli R.M., Beaudoin J.J., Delgado A.H. Handbook of Thermal Analysis of Construction Materials, Noyes Publications: New York, NY, USA, 2002.
12. Feng N., Jia H., Chen E. Study on the suppression effect of natural zeolite on expansion of concrete due to alkali-aggregate reaction. Mag. Concr. Res. 1998, 50, 17–24. https://doi.org/10.1680/macr.1998.50.1.17.
13. Sersale R., Frigione G. Portland-zeolite-cement for minimizing alkali-aggregate expansion. Cem. Concr. Res. 1987, 17, 404–410. https://doi.org/10.1016/0008-8846(87)90004-4.
14. Owsiak Z., Czapik P. The reduction of expansion of mortars produced from reactive aggregate by the clinoptilolite addition. Cem. Lime Concr. 2014, 19, 152–157.
15. Marfil S.A., Maiza P.J. Deteriorated pavements due to the alkali-silica reaction. A petrographic study of three cases in Ar-gentina, Cem. Concr. Res. 2001, 31, 1017–1021. https://doi.org/10.1016/S0008-8846(01)00508-7.
16. Marfil S.A., Maiza P.J. Zeolite crystallization in portland cement concrete due to alkali-aggregate reaction. Cem. Concr. Res. 1993, 23, 1283–1288. https://doi.org/10.1016/0008-8846(93)90066-I.
17. Gregorová M., Všianský D. Geo-Visualization of aggregate for AAR prediction and its importance for risk management. In Proceeding of the 13th International Conference of Alkali-Aggregate Reaction, Trondheim, Norway, 16–20 June 2008.
18. Kurdowski W., Garbacik A., Trybalska B. Type of cement and phase formed during corrosion of mortar with opal addition in 1 N solution NaOH. Cem. Lime Concr. 2005, 6, 98–107.
19. Ramachandran V.S. Alkali-aggregate expansion inhibiting admixtures. Cem. Concr. Compos. 1998, 20, 149–161. https://doi.org/10.1016/S0958-9465(97)00072-3.
20. Multon S., Cyr M., Sellier A., Diederich P., Petit, L. Effect of aggregate size and alkali content on ASR expansion. Cem. Concr. Res. 2010, 40, 508–516. https://doi.org/10.1016/j.cemconres.2009.08.002.
21. Mass A.J., Ideker J.H., Juenger M.C.G. Alkali silica reactivity of agglomerated silica fume. Cem. Concr. Res. 2007, 37, 166–174. https://doi.org/10.1016/j.cemconres.2006.10.011.
22. Chen X., Srubar III W.V. Sulfuric acid improves the reactivity of zeolites via dealumination. Constr. Build. Mater. 2020, 264, 120648. https://doi.org/10.1016/j.conbuildmat.2020.120648.
23. Ramezaniapour A.A. Cement Replacement Materials, Springer: Berlin/Heidelberg, Germany, 2014.
24. Snellings R., Mertens G., Gasharova B., Garbev K., Elsen J. The pozzolanic reaction between clinoptilolite and portlandite: A time and spatially resolved IR study. Eur. J. Mineral. 2010, 22, 767–777. https://doi.org/10.1127/0935-1221/2010/0022-2019.
25. Martínez-Ramírez S., Blanco-Varela M.T., Ereña I., Gener M. Pozzolanic reactivity of zeolitic rocks from two different Cuban deposits: Characterization of reaction products. Appl. Clay Sci. 2006, 32, 40–52. https://doi.org/10.1016/j.clay.2005.12.001.
26. Heisig A., Urbonas L., Beddoe R.E., Heinz D. Ingress of NaCl in concrete with alkali reactive aggregate: Effect on silicon solubility. Mater. Struct. 2016, 49, 4291–4303. https://doi.org/10.1617/s11527-015-0788-y.
27. Liu R., Jiang L., Xu J., Xiong C., Song Z. Influence of carbonation on chloride induced reinforcement corrosion in simulated concrete pore solution. Constr. Build. Mater. 2014, 56, 16–20. https://doi.org/10.1016/j.conbuildmat.2014.01.030.
28. Yang H., Li W., Liu X., Liu A., Hang P., Ding R., Li T., Zhang Y., Wang W., Xiong C. Preparation of corrosion inhibitor loaded zeolites and corrosion resistance of carbon steel in simulated concrete pore solution. Constr. Build. Mater. 2019, 225, 90–98. https://doi.org/10.1016/j.conbuildmat.2019.07.141.
29. Bulteel D., Rafaï N., Degrugilliers P., Garcia-Diaz E. Petrography study on altered flint aggregate by alkali-silica reaction. Mater. Charact. 2004, 53, 141–154. https://doi.org/10.1016/j.matchar.2004.08.004.
30. PDF2 Release 2023, The International Centre for Diffraction Data (ICDD): Newtown Square, PA, USA, 2022.
31. Sims I., Nixon P. RILEM Recommended Test Method AAR-1, Detection of potential alkali-reactivity of aggre-gates—Petrographic method. Mater. Struct. 2003, 26, 480–496. https://doi.org/10.1007/BF02481528.
32. Owsiak Z. The hydration of Portland cement with fly ash. Cem. Lime Concr. 2000, 5, 29–31.
33. Ortega E.A., Cheeseman C., Knight J., Loizidou M. Properties of alkali-activated clinoptilolite. Cem. Concr. Res. 2000, 30, 1641–1646. https://doi.org/10.1016/S0008-8846(00)00331-8.
34. Cornejo M.H., Elsen J., Baykara H., Paredes C. Hydration process of zeolite-rich tuffs and siltstone-blended cement pastes at low W/B ratio, under wet cring condition. Eur. J. Environ. Civ. 2014, 18, 629–651. https://doi.org/10.1080/19648189.2014.897005.
35. Zhu G., Li H., Wang X., Li S., Hou X., Wu W., Tang Q. Synthesis of calcium silicate hydrate in highly alkaline system. J. Am. Ceram. Soc. 2016, 99, 2778–2785. https://doi.org/10.1111/jace.14242.
36. Kloprogge J.T., Ding Z., Martens W.N., Schuiling R.D., Duong L.V., Frost R.L. Thermal decomposition of syngenite, K2Ca(SO4)2·H2O. Thermochim. Acta 2004, 417, 143–155. https://doi.org/10.1016/j.tca.2003.12.001.
37. Lu D., Mei L., Xu Z., Tang M., Fournier B. Alteration of alkali reactive aggregate autoclaved in different alkaline solution and application to alkali-aggregate reaction in concrete (I) Alteration of alkali reactive aggregates in alkali solution. Cem. Concr. Res. 2006, 36, 1176–1190. https://doi.org/10.1016/j.cemconres.2006.01.008.
38. Czapik P., Czechowicz M. Effects of natural zeolite particle size on the cement paste properties. Struct. Environ. 2017, 9, 180–190.
39. Hou X., Struble L.J., Kirkpatrik R.J. Formation of ASR gel and the roles of C-S-H and portlandite. Cem. Concr. Res. 2004, 34, 1683–1696. https://doi.org/10.1016/j.cemconres.2004.03.026.
40. Hamoudi A., Khouchaf L., Depecker C., Revel B., Montagne L., Corrdier P. Microstructural evolution of amorphous silica following alkali-silica reaction- J. Non-Cryst. Solids 2008, 354, 5074–5078. https://doi.org/10.1016/j.jnoncrysol.2008.07.001.
41. Criado M., Fernández-Jiménez A., de la Torre A.G., Aranda M.A.G., Palomo A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation fly ash. Cem. Concr. Res. 2007, 37, 671–679. https://doi.org/10.1016/j.cemconres.2007.01.013.
42. Ramachandran V.S. Concrete Admixtures Handbook, Noyes Publications: Park Ridge, NJ, USA, 1995.
43. Kunther W., Lothenbach B., Scrivener K.L. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cem. Concr. Res. 2013, 46, 23–29. https://doi.org/10.1016/j.cemconres.2013.01.002.
44. Owsiak Z. The effect of delayed ettringite formation and alkali-silica reaction on concrete microstructure. Ceramics-Silikaty 2010, 54, 151–153.
45. Stark J., Möser V., Bellmann F. New approaches to cement hydration in the early hardening stage. In Proceeding of the 11th International Congress of Chemistry of Cement, Durban, South Africa, 11–16 May 2003.
46. Mitchell L.D., Grattan-Bellew P.E., Margeson J., Fournier B. The Mechanistic differences between alkali silica and alkali carbonate reactions as studied by X-ray diffraction. In Proceeding of the 12th International Conference of Alkali-Aggregate Reaction, Beijing, China, 15–19 October 2004.
47. Chatterji S., Thaulow N., Jensen A.D. Studies of alkali-silica reaction. Part 6. Practical implication of proposed reaction mechanism. Cem. Concr. Res. 1988, 18, 363–366. https://doi.org/10.1016/0008-8846(88)90070-1.
48. Damian G.,Damian F., Szakács Z., Iepure G., Aştefanei D. Mineralogical and Physico-Chemical Characterization of the Oraşu-Nou (Romania) Bentonite Resources. Minerals 2021, 11, 938. https://doi.org/10.3390/min11090938.
49. Kurdowski W., Garbacik A., Trybalska B. Application of accelerated test ASTM 1260 to aggregate containing calcium car-bonate. Cem. Lime Concr. 2005, 6, 339–348.
50. Milanesi C.A., Marfil S.A., Batic O.R., Maiza P.J. The alkali-carbonate reaction and its reaction products an experience with Argentinean dolomite rocks. Cem. Concr. Res. 1996, 26, 1579–1591. https://doi.org/10.1016/0008-8846(96)00140-8.
51. Zybura A., Jaśniok M., Jaśniok T. Diagnostics of Reinforced Concrete Structures. Tests on Reinforcement Corrosion and Concrete Protective Properties, PWN: Warsaw, Poland, 2011.