Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[119600] Artykuł:

Development of FEM Calculation Methods to Analyse Subcooled Boiling Heat Transfer in Minichannels Based on Experimental Results

Czasopismo: Applied Sciences   Tom: 12982, Zeszyt: 12(24), Strony: 1-19
ISSN:  2076-3417
Opublikowano: Grudzień 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Magdalena Piasecka orcid logo WMiBMKatedra Mechaniki i Procesów CieplnychTakzaliczony do "N"Inżynieria mechaniczna3333.3333.33  
Beata Maciejewska orcid logo WZiMKKatedra Matematyki i Fizyki*Takzaliczony do "N"Inżynieria mechaniczna3333.3333.33  
Paweł Łabędzki orcid logo WZiMKKatedra Matematyki i Fizyki*Takzaliczony do "N"Inżynieria mechaniczna3333.3333.33  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

heat transfer  flow boiling  minichannel  Trefftz functions  ADINA 



Abstract:

Even though two-phase heat transfer of refrigerants in minichannel heat sinks has been studied extensively, there is still a demand for improvements in overall thermal performance of miniature heat transfer exchangers. Experimental investigation and sophisticated heat transfer calculations with respect to heat transfer devices are still needed. In this work, a time-dependent experimental study of subcooled boiling was carried out for FC-72 flow in a heat sink, comprising of five asymmetrically heated minichannels. The heater surface temperature was continuously monitored by an infrared camera. The boiling heat transfer characteristics were investigated and the effect of the mass flow rate on the heat transfer coefficient was studied. In order to solve the heat transfer problem related to time-dependent flow boiling, two numerical methods, based on the FEM were applied, and based on the Trefftz functions (FEMT) and using the ADINA program. The results achieved with these two calculation methods were explored with an emphasis on the impact of the mass flow rate (range from 5 to 55 kg/h) on the resulting heat transfer coefficient. It was found that, with increasing mass flow, the heat transfer coefficient increased. Good agreement was found between the heat transfer coefficients, determined according to two numerical methods and the simple 1D calculation method.