Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: This paper discusses a mathematical model for airflow through a cross‐flow plate heat exchanger. The exhaust air is used to heat the supply air. Three kinds of plates are considered: made of aluminium, copper, and steel. The purpose of this research was to verify which material used to build the plate heat exchangers uses the exhaust air heat more efficiently. The method of the Trefftz function was used to determine approximate solutions to the analysed problem. The results obtained for 1.2 mm‐thick plates and for external winter, summer, and spring–autumn temperatures are discussed. The results indicate that if the efficiency and price of the metals are considered, then steel is the best material for the plate heat exchanger. Thanks to the use of thin steel plates and the reduction in air exchange time to a few minutes, a cheap and efficient cross‐flow heat exchanger can be obtained.
B I B L I O G R A F I A1. Shah, R.K.
Sekulic, D.P. Chapter 1, Classification of Heat Exchangers. In Fundamentals of Heat Exchanger Design
John WIley and
Sons: Hoboken, NJ, USA, 2003
pp. 1–77.
2. Wang, L.
Sundén, B.
Manglik, R.M. Plate Heat Exchangers, Design, Applications and Performance
WIT Press Southampton: Boston,
MA, USA, 2007.
3. Available online: https://www.rekuperatory.pl/rekuperator#co‐to‐jest‐rekuperator (accessed on 31 June 2021).
4. Xu, K. Design and Optimization of Plate Heat Exchanger Networks. Ph.D. Thesis, The University of Manchester, Faculty of
Science and Engineering: Manchester, UK, 2019.
5. Grysa, K.
Maciąg, A.
Ściana, A. Comparison of the Efficiency of Two Types of Heat Exchangers with Parallel Plates Made of
Varied Materials. Energies 2021, 14, 8562.
6. Available online: https://wentylacja.com.pl/news/plytowe‐wymienniki‐krzyzowe‐do‐odzysku‐ciepla‐63582.html (accessed on
8 July 2022).
7. Gao, T.
Sammakia, B.G.
Geer, J.F.
Ortega, A.
Schmidt, R. Dynamic Analysis of Cross Flow Heat Exchangers in Data Centers
Using Transient Effectiveness Method. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 1925–1935.
https://doi.org/10.1109/TCPMT.2014.2369256.
8. Vali, A.
Simonson, C.J.
Besant, R.W.
Mahmood, G. Numerical model and effectiveness correlations for a run‐around heat
recovery system with combined counter and cross flow exchangers. Int. J. Heat Mass Transf. 2009, 52, 5827–5840
9. Vali, A.
Ge, G.‐M.
Besant, R.W.
Simonson, C.J. Numerical modeling of fluid flow and coupled heat and mass transfer in a
counter‐cross‐flow parallel‐plate liquid‐to‐air membrane Energy exchanger. Int. J. Heat Mass Transf. 2015, 89, 1258–1276.
10. Das, R.S.
Jain, S. Performance characteristics of cross‐flow membrane contactors for liquid desiccant systems. Appl. Energy 2015,
141, 1–11.
11. Shen, K.
Zhang, Z.‐D.
Zhang, Z.‐Q.
Yang, Y.‐W. Investigation of effect on cross‐flow heat exchanger with air flow non‐uniformity
under low Reynolds number. Adv. Mech. Eng. 2017, 9, 1687814017708088. https://doi.org/10.1177/1687814017708088.
12. Bai, H.‐Y.
Zhu, J.
Chen, Z.‐W.
Chu, J.‐Z. Parametric analysis of a cross‐flow membrane‐based parallel‐plate liquid desiccant
dehumidification system: Numerical and experimental data. Energy Build. 2018, 158, 494–508.
13. Dvořák, V.
Vít, T. Numerical investigation of counter flow plate heat exchanger. Energy Procedia 2015, 83, 341–349.
14. Carslaw, H.S.
Jaeger, J.C. Conduction of Heat in Solids
Oxford University: Oxford, UK, 1959.
15. Mills, A.F. Basic Heat and Mass Transfer
Prentice‐Hall: Upper Saddle River, NJ, USA, 1999.
16. Mills, A.F.
Coimbra, C.F.M. Basic Heat and Mass Transfer
Temporal Publishing, LLC: San Diego, CA, USA, 2015.
17. Available online: Thermopedia.com/content/1187/ (accessed on 8 October 2022).
18. Available online: https://www.engineersedge.com/thermodynamics/overall_heat_transfer‐table.htm (accessed on 9 September
2021).
19. Inhelder, J. Verbrauchs und Schadstoffoptimiertes Ottomotor‐Aufladekonzept, ETH No. 11948. Ph.D. Thesis, Swiss Federal
Institute of Technology, Zürich, Switzerland, 1996.
20. Eriksson, L.
Nielsen, L. Modeling and Control of Engines and Drivelines
Wiley: New York, NY, USA, 2014
p. 530.
21. Sforza, P. Commercial Airplane Design Principles
Elsevier Inc.: Amsterdam, The Netherlands, 2014
ISBN 978‐0‐12‐419953‐8.
22. White, F. Fluid Mechanics, 4th ed.
McGraw‐Hill Higher Education: New York, NY, USA, 2002
ISBN: 0‐07‐228192‐8.
23. Incropera, F.P.
DeWitt, D.P. Fundamentals of Heat Transfer
Wiley: New York, NY, USA, 1981
ISBN 978‐0‐471‐42711‐7.
24. Trefftz, E. Ein Gegenstueck zum Ritz’schen Verfahren. In Proceedings of the 2nd International Congress of Applied Mechanics,
Zurich, Switzerland, 12–17 September 1926
pp. 131–137.
25. Grysa, K.
Maciejewska, B. Trefftz functions for non‐stationary problems. J. Theoret. Appl. Mech. 2013, 50, 251–264.
26. Frąckowiak, A.
Wróblewska, A.
Ciałkowski, M. Trefftz numerical functions for solving inverse heat conduction problems. Int.
J. Therm. Sci. 2022, 177, 107566. https://doi.org/10.1016/j.ijthermalsci.2022.107566.
27. Frąckowiak, A.
Ciałkowski, M.
Wróblewska, A. Iterative algorithms for solving inverse problems of heat conduction in multiply
connected domains. Int. J. Heat Mass Transf. 2012, 55, 744–751. https://doi.org/10.1016/j.ijheatmasstransfer. 2011.10.035
28. Ciałkowski, M.J.
Frackowiak, A. Thermal and related functions used in solving certain problems of mechanics, Part, I. Solving
some differential equations with the use of inverse operator. In Modern Problems of Technics
University of Zielona Góra Publishers:
Zielona Góra, Poland, 2003
Volume 3, pp. 7–70.
29. Maciąg, A.
Grysa, K. Trefftz Method of Solving a 1D Coupled Thermoelasticity Problem for One‐ and Two‐Layered Media.
Energies 2021, 14, 3637. https:// doi.org/10.3390/en14123637.
30. Pudlik, W. Exchange and Heat Exchangers
Gdańsk University of Technology: Gdańsk, Poland, 2012
p. 320. Available online:
https://pbc.gda.pl/Content/4404/wymiana‐i‐wymienniki‐final.pdf (accessed on 8 July 2022). (In Polish)
31. Available online: https://www.engineeringtoolbox.com/heat‐recovery‐efficiency‐d_201.html (accessed on 8 December 2021).
32. Available online: https://agmetalminer.com/metal‐prices/, (accessed on 8 July 2022).
33. Available online: https://www.moneymetals.com/copper‐prices, (accessed on 8 July 2022).