Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: This article is concerned with dry and wet turning of C45 steel using sintered carbide tools. The study focused on the surface topography of workpieces obtained by means of a 3D surface measurement system operating in two modes: confocal and interferometric. The main purpose was to compare the corresponding data measured in the two modes, confocal and interferometric. The study also aimed to analyse the tool wear depending on the turning conditions. The use of a scanning electron microscope and a stereoscopic microscope was essential to comprehensively characterise the workpiece surfaces and determine the cutting tool wear. The results obtained in the confocal and interferometric modes differed. The confocal module proved to be better for characterising the surface topography of C45 steel machined by turning. The surface quality after wet turning was higher than after dry turning; hence the lower values of the 2D parameters (Ra, Rq, Rp and Rv) and of the 3D parameters (Sa, Sq, Sp, Sv). The wear visible on the cutting tool after wet turning was half as much as that after dry turning (e.g. surface abrasion indicator VBBmax equal to 0.21 mm for wet turning and 0.39 mm for dry turning). The results prove that the choice of methods for measuring the surface topography (by determining the relevant parameters and functions) and analysing the surface features can play an important role in the characterisation of the machined surface. A well-thought-out research methodology is thus essential. From the experimental data, it is also clear that the use of mineral oil-based cutting fluid for turning with sintered carbide tools improved the surface quality of workpieces and reduced the tool wear.
B I B L I O G R A F I A[1] D.J. Whitehouse, Handbook of Surface and Nanometrology, CRC Press, Boca Raton/London/ New York (2011)
[2] R. Deltombe, K.J. Kubiak, M. Bigerelle, How to select the most relevant 3D roughness parameters of a surface, Scanning (2014), pp. 150-160
[3] U. Persson, Measurement of surface roughness using infrared scattering, Measurement, 18 (2) (1996), pp. 109-116
[4] W. Kacalak, D. Lipiński, R. Różański, G.M. Królczyk, Assessment of the classification ability of parameters characterizing surface topography formed in manufacturing and operation processes, Measurement, 170 (2021), pp. 1-13
[5] P. Demircioglu, I. Bogrekci, N.M. Durakbasa, Micro scale surface texture characterization of technical structures by computer vision, Measurement, 46 (6) (2013), pp. 2022-2028
[6] M. Niemczewska-Wójcik, Dualny system charakteryzowania powierzchni technologicznej i eksploatacyjnej warstwy wierzchniej elementów trących, Wydawnictwo: Sieć Badawcza Łukasiewicz – Instytutu Technologii Eksploatacji, 2018 (in Polish).
[7] P. Pawlus, R. Reizer, M. Wieczorowski, Problem of non-measured points in surface texture measurements, Metrol. Meas. Syst. (2017), pp. 525-536
[8] M. Niemczewska-Wójcik, A. Wójcik, T. Mathia, Measurement techniques used for analysis of the geometric structure of machined surfaces, Manage. Prod. Eng. Rev., 5 (2) (2014), pp. 27-32
[9] D.J. Whitehouse, Surface measurement fidelity, Trans. Eng. Sci. (1999), pp. 267-276
[10] F. Cheng, S. Fu, Z. Chen, Surface texture measurement on complex geometry using dual-scan positioning strategy, Appl. Sci., 10 (2020), pp. 1-13
[11] P. Pawlus, Digitisation of surface topography measurement results, Measurement, 40 (6) (2007), pp. 672-686
[12] S.J. Oh, Y.C. Shin, E.S. Furgason, Measurement and characterization of milled surface profiles using ultrasonic waves, Measurement, 17 (1) (1996), pp. 59-72
[13] Ç.V. Yıldırım, T. Kıvak, F. Erzincanlı, Influence of different cooling methods on tool life, wear mechanisms and surface roughness in the milling of nickel-based waspaloy with WC tools, Arab. J. Sci. Eng., 44 (9) (2019), pp. 7979-7995
[14] M. Dobrzynski, K. Mietka, Surface texture after turning for various workpiece rigidities, Machines (2021), pp. 1-10
[15] W. Grzesik, Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools, Wear, 265 (2008), pp. 327-335
[16] G. Królczyk, Wybrane aspekty analizy topografii powierzchni w modelowaniu i procesach obróbkowych, Oficyna Wydawnicza Politech. Opolskiej (2019), (in Polish)
[17] T.G. Mathia, P. Pawlus, M. Wieczorowski, Recent trends in surface metrology, Wear, 271 (3-4) (2011), pp. 494-508
[18] M. Wieczorowski, Metrologia nierówności powierzchni: metody i systemy, ZAPOL, 2013 (in Polish).
[19] B. Sen, M. Mia, M.K. Gupta, Influence of Al2O3 and palm oil–mixed nano-fluid on machining performances of Inconel-690: IF-THEN rules–based FIS model in eco-benign milling, Int. J. Adv. Manuf. Technol. (2019), pp. 3389-3403
[20] M. Alabdullah, A. Polishetty, G. Littlefair, Microstructural and surface texture analysis due to machining in super austenitic stainless steel, J. Metall., 2016 (2016), pp. 1-8
[21] P. Muñoz-Escalona, P.G. Maropoulos, A geometrical model for surface roughness prediction when face milling Al 7075–T7351 with square insert tools, J. Manuf. Syst., 36 (2015), pp. 216-223
[22] X.-L. Liu, J.-K. Shi, W. Ji, L.-H. Wang, Experimental evaluation on grinding texture on flank face in chamfer milling of stainless steel, Chin. J. Mech. Eng., 31 (1) (2018)
[23] A.K. Srivastava, A. Nag, A.R. Dixit, S. Hloch, S. Tiwari, J. Scucka, P. Pachauri, Pachauri, Surface integrity in wire-EDM tangential turning of in situ hybrid metal matrix composite A359/B4C/Al2O3, Sci. Eng. Compos. Mater., 26 (1) (2019), pp. 122-133
[24] G.M. Krolczyk, R.W. Maruda, J.B. Krolczyk, P. Nieslony, S. Wojciechowski, S. Legutko, Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions, Measurement, 121 (2018), pp. 225-239
[25] K. Leksycki, J.B. Królczyk, Comparative assessment of the surface topography for different optical profilometry techniques after dry turning of Ti6Al4V titanium alloy, Measurement, 169 (2021), Article 108378
[26] M.K. Gupta, P. Niesłony, M. Sarikaya, M.E. Korkmaz, M. Kuntoğlu, G.M. Królczyk, M. Jamil, Tool wear patterns and their promoting mechanisms in hybrid cooling assisted machining of titanium Ti-3Al-2.5V/grade 9 alloy, Tribol. Int., 174 (2022), Article 107773
[27] M. Niemczewska-Wójcik, A. Wójcik, The machining process and multi-sensor measurements of the friction components of total hip joint prosthesis, Measurement, 116 (2018), pp. 56-67
[28] M. Niemczewska-Wójcik, A. Wójcik, The multi-scale analysis of ceramic surface topography created in abrasive machining process, Measurement, 166 (2020), pp. 1-30
[29] M. Niemczewska-Wójcik, Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests, Measurement, 107 (2017), pp. 89-98
[30] S.V. Baryshev, R.A. Erck, J.F. Moore, A.V. Zinovev, C.E. Tripa, I.V. Veryovkin, Characterization of surface modifications by white light interferometry: applications in ion sputtering, laser ablation, and tribology experiments, J. Visual. Exp. (2013), pp. 1-16
[31] C. Liu, N. Lin, Y.H. He, W.S. Liu, Y.Z. Ma, Influence of micron WC addition on the microstructure and mechanical properties of ultrafine WC–Co cemented carbides at the elevated temperature, J. Superhard Mater., 40 (1) (2018), pp. 40-46
[32] J. Kowalczyk, M. Madej, K. Milewski, L. Nowakowski, D. Ozimina, The influence of cutting fluid and diamond-like carbon coating on cutting tool wear, J. Mach. Constr. Mainten., 2 (2019), pp. 83-92
[33] J. Kowalczyk, M. Madej, D. Ozimina, Assessing the exploitation properties of pro-ecological cutting fluid containing zinc aspartate, Eksploat. Niezaw. – Mainten. Reliab., 22 (2020), pp. 465-471
[34] M. Skrzyniarz, L. Nowakowski, E. Miko, K. Borkowski, Influence of relative displacement on surface roughness in longitudinal turning of X37CrMoV5-1 steel, Materials, 14 (2021), p. 1317
[35] X. Liang, Z. Liu, G. Yao, B. Wang, X. Ren, Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V, Tribol. Int., 135 (2019), pp. 130-142
[36] PN-ISO 3685 Badanie trwałości noży tokarskich punktowych (in Polish).
[37] N. Szczotkarz, R. Mrugalski, R.W. Maruda, G.M. Królczyk, S. Legutko, K. Leksycki, D. Dębowski, C.I. Pruncu, Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication, Tribol. Int., 156 (2021), Article 106813
[38] F. Klocke, Manufacturing Process 1: Cutting. Springer-Verlag, 2001.