Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[118330] Rozdział:

Numerical Modelling of Medium Slurry Flow in a Vertical Pipeline

w książce:   Slurry Technology - New Advances
ISBN:  978-1-80356-669-6
Wydawca:  IntechOpen
Opublikowano: Pażdziernik 2022
Miejsce wydania:  London
Liczba stron:  19
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Artur Bartosik orcid logo WZiMKKatedra Inżynierii ProdukcjiNiezaliczony do "N"Inżynieria mechaniczna1005.005.00  

Grupa MNiSW:  Autorstwo rozdziału w monografii spoza listy wydawnictw 2019
Punkty MNiSW: 5


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Medium slurry flow  experiments on slurry flow  modelling of vertical slurry flow  modelling of slurry turbulence. 



Abstract:

The study deals with the modelling and experiments of vertical solid-liquid turbulent flow with narrowly sized solid particles of average diameters equal to 0.125 mm, 0.240 mm and 0.470 mm, and solid concentrations by volume from 10% to 40%, called medium slurry. The physical model assumes that the slurry with solid particles surrounded by water is flowing upward through a vertical pipeline with solid concentrations from 10–40% by volume. Experiments with such slurries clearly indicated enhanced damping of the turbulence, which depends on the diameter of the solid particles. The mathematical model constitutes conservative equations based on time averages for mass and momentum. The closure problem was solved by taking into account the Boussinesque hypothesis and a two-equation turbulence model together with an especially designed wall damping function. The wall damping function depends on the average diameter of the solid particles and the bulk concentration. The predictions’ results were successfully compared with the measurements. The study demonstrates the importance of solid particle diameter and showed that using a standard wall damping function gives higher friction compared to measurements. The main objective of this study is to present a mathematical model for medium slurry flow in a vertical pipeline, including a specially designed wall damping function, and to demonstrate the influence of solid particle size on frictional head loss. The effect of mean particle diameter and solid concentration on frictional head loss has been discussed and conclusions were formulated.



B   I   B   L   I   O   G   R   A   F   I   A
1. Dong H, Abdul Aziz N, Mohd Shafri HZ, Bin Ahmad KA. Numerical study on transportation of cemented paste backfill slurry in bend pipe. PRO. 2022
10(1454):1-19
2. Javed K, Vaezi M, Kurian V, Kumar A. Frictional behaviour of wheat straw-water suspensions in vertical upward flows. Biosystems Engineering. 2021
212:30-45
3. Dai Y, Zhang Y, Li X. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining. Ocean Engineering. 2021
220:108411. DOI: doi.org/10.1016/j.oceaneng.2020.108411
4. Shook CA, Roco MC. Slurry Flow: Principles and Practice. Boston: Butterworth−Heinemann
1991
5. Wilson KC, Addie GR, Sellgren A, Clift R. Slurry Transport Using Centrifugal Pumps. 3rd ed. New York: Springer-Verlag
2006
6. Chen ZX, Hu HX, Guo XM, Zheng YG. Effect of groove depth on the slurry erosion of V-shaped grooved surfaces. Wear. 2022
488–489:204133
7. Bagnold RA. Experiments on a gravity−free dispersion of large solids spheres in a Newtonian fluid under shear. Proceedings of the Royal Society. 1954
225(A):49-63. DOI: 10.1098/rspa.1954.0186
8. Shook CA, Bartosik AS. The pseudohomogeneous flow approximation for dispersed two-phase systems. Particulate Science and Technology. 1991
9:119-134
9. Wiwatanapataphee B, Chayantrakom K, Wu YH. Mathematical modelling and numerical simulation of fluid-magnetic particle flow in a small vessel. International Journal of Mathematical Models and Methods in Applied Sciences. 2007
1(3):209-215
10. Abdel-Rahman AA. A closed-form expression for an abrasive waterjet cutting model for ceramic materials. International Journal of Mathematical Models and Methods in Applied Sciences. 2011
5(4):722-729
11. Doron P, Granica D, Barnea D. Slurry flow in horizontal pipes experimental and modelling. International Journal of Multiphase Flow. 1987
13(4):535-547
12. Talmon AM. Analytical model for pipe wall friction of pseudo-homogenous sand slurries. Particulate Science and Technology. 2013
31(3):264-270
13. Bartosik A. Influence of coarse-dispersive solid phase on the ‘particles–wall’ shear stress in turbulent slurry flow with high solid concentration. The Archive of Mechanical Engineering. 2010
LVII(1):45-68
14. Wilson KC, Thomas AD. A new analysis of the turbulent flow of non-Newtonian fluids. Canadian Journal of Chemical Engineering. 1985
63:539-546
15. Lovato S, Keetels GH, Toxopeus SL, Settels JW. An eddy-viscosity model for turbulent flows of Herschel-Bulkley fluids. Journal of Non-Newtonian Fluid Mechanics. 2022
301:1-13
16. Bartosik A. Application of rheological models in prediction of turbulent slurry flow. Flow, Turbulence and Combustion. Springer-Verlag. 2010
84(2):277-293
17. Sumner RJ. Concentration variations and their effects in flowing slurries and emulsions. Saskatoon. Canada: University of Saskatchewan
1992
18. Soo SL. Multiphase Fluid Dynamics. Beijing: Science Press
1990
19. Roberts CPR, Kennedy JF. Particle and fluid velocities of turbulent flows of suspensions of neutrally buoyant particles. In: Zandi I, editor. Advances in Solid-liquid Flow in Pipes and Its Applications. Oxford: Pergamon Press
1971. pp. 59-72
20. Kowalewski A. Velocity profiles of suspension flowing through a tube. Archives in Mechanics. 1980
32(6):857-865
21. Altobelli SA, Givler RC, Fukushima E. Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. Journal of Rheology. 1991
35(5):721-734
22. Yianneskis M, Whitelaw JH. Velocity characteristics of pipe and jet flows with high particle concentration. ASME Symposium on Liquid-Solid Flows and Erosion Wear in Industrial Equipment. 1983
13:12-15
23. Nouri JM, Whitelaw JH, Yianneskis M. Particle motion and turbulence in dens two-phase flows. International Journal of Multiphase Flow. 1987
13:729-739
24. Nouri JM, Whitelaw JH. Particle velocity characteristics of dilute to moderately dense suspension flows in stirred reactors. International Journal of Multiphase Flow. 1992
18(1):21-33
25. Wildman DJ, Ekmann JM, Kadambi JR, Chen RC. Study of the flow properties of slurries using the refractive index matching technique and LDV. Powder Technology. 1992
73(3):211-218
26. Chen RC, Kadambi JR. Experimental and numerical studies of solid-liquid pipe flow. ASME Liquid-Solid Flows. 1994
189:123-135
27. Chen RC, Kadambi JR. Discrimination between solid and liquid velocities in slurry flow using doppler velocimeter. ASME Powder Technology. 1995
85:127-134
28. Shook CA. Experiments with concentrated slurries of particles with densities near that of the carrier fluid. Canadian Journal of Chemical Engineering. 1985
63:861-869
29. Sumner RJ, Mckibben M, Shook CA. Concentration measurements in pipelines containing flowing two-phase mixtures. Petroleum Society of CIM. Paper No. PETSOC-SS-89-08. 1989. pp. 1-8
30. Nasr-El-Din H, Shook CA, Colwell J. A conductivity probe for measuring local concentrations in slurry systems. International Journal of Multiphase Flow. 1987
13(3):365-378
31. Sumner RJ, McKibben M, Shook CA. Concentration and velocity distribution in turbulent vertical slurry flow. Journal of Solid Liquid Flow. 1991
2(2):33-42
32. Nasr-El-Din H, Shook CA, Colwell J. The lateral variation of solids concentration in horizontal slurry pipeline flow. International Journal of Multiphase Flow. 1987
13:661-670
33. Kuboi R, Komasawa I, Otake T. Fluid and particle motion in turbulent dispersion–II—Influence of turbulence of liquid on the motion of suspended particles. Chemical Engineering Science. 1974
29:651-657
34. Schreck S, Kleis SJ. Modification of grid−generated turbulence by solid particles. Journal of Fluid Mechanics. 1993
249:665-688
35. Gai G, Hadjadj A, Kudriakov S, Thomine O. Particles-induced turbulence: A critical review of physical concepts, numerical modeling and experimental investigations. Theoretical & Applied Mechanics Letters. 2020
10:241-248
36. Gore RA, Crowe CT. Modulation of turbulence by a dispersed phase. Journal of Fluid Engineering. 1991
113:304-307
37. Sundaresan S, Eaton J, Koch DL, Ottino JM. Appendix 2: Report of study group on disperse flow. International Journal of Multiphase Flow. 2003
29:1069-1087
38. Jianren F, Junmei S, Youqu Z, Kefa C. The effect of particles on fluid turbulence in a turbulent boundary layer over a cylinder. Acta Mechanics Sinica. 1997
13:36-43
39. Eaton JK, Paris AD, Burton TM. Local distortion of turbulence by dispersed particles. AIAA. 2012
2012:3643
40. Fessler JR, Eaton JK. Turbulence modification by particles in a backward-facing step flow. Journal of Fluid Mechanics. 1999
394:97-117
41. Li D, Luo K, Fan J. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. Journal of Fluid Mechanics. 2016
802:359-394
42. Launder BE, Sharma BI. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer. 1974
1:131-138
43. Ruffin SM, Lee JD. Adaptation of a k-epsilon model to a cartesian grid based methodology. International Journal of Mathematical Models and Methods in Applied Sciences. 2011
3(3):238-245
44. Ruffin SM, Lee JD. Flow field prediction accuracy and efficiency using a cartesian grid framework. International Journal of Mathematical Models and Methods in Applied Sciences. 2011
3(3):246-255
45. Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Mechanics and Engineering. 1974
3:269-289
46. Bartosik A. Mathematical modelling of slurry flow with medium solid particles, Monograph: Mathematical Models and Methods in Modern Science, Int. Conf. Mathematical Models for Engineering Science. 2011. Spain
47. Roache PJ. Computational Fluid Dynamics. Albuquerque: Hermosa Publ
1982
48. Bartosik A. Simulation of medium slurry flow with enhanced damping of turbulence. In: Proc. Transport and Sedimentation of Solid Particles. Rostock, Germany
2013. pp. 215-226
49. Coulson JM, Richardson JF, Backhurst JR, Hraker JH. Chemical Engineering. Butterworth-Heinemann
1996
50. Bartosik A. Validation of friction factor predictions in vertical slurry flows with coarse particles. Journal of Hydrology and Hydromechanics. 2020
68(2):119-127
51. Charles ME, Charles RA. Advances in Solid-liquid Flow and Its Applications. New York: Pergamon Press
1971
52. Ghosh T, Shook CA. Freight pipelines. In: Liu H, Round GF, editors. Freight Pipelines. Washington, DC: Hemisphere
1990. pp. 281-288
53. Matousek V. Research developments in pipeline transport of settling slurries. Powder Technology. 2005
156:43-51