Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: Road transport is one among the sources of air pollution in a city, which results in lowering the comfort of life and increases the occurrence of respiratory diseases. The level of pollutants emitted in the city is variable, and it depends on the type and nature of the source and the manner of land development. For this reason, the purpose of the article is an attempt at a spatial (inner) diversification of a city in terms of air quality, using a study of perception and semantic differentials (SD). The research, which covered the period from June to November 2021, was performed in Kielce—the Polish Smart City—among local experts, people well acquainted with the city and knowledgeable about air quality and the impact of pollution on human health. The results allowed the demarcation of areas with the best and the worst parameters in terms of air quality within the city. Verification of the survey was carried out using the ADMS-Roads (Atmospheric Dispersion Modeling System) software for modeling pollution levels and GIS software, using data on road traffic. The verification allowed checking whether the respondents participating in the research accurately evaluated the city space. The modeling proved that within the two selected areas, the pollution level is similar, and it does not exceed the permitted values. This might indicate that in society there is still low awareness of air quality, particularly in terms of knowing the sources of pollutants and their impact on human health, and perception of areas with the best and the worst air quality was the result of an analysis of the manner of land development and its morphology.
B I B L I O G R A F I AReferences
World Health Organization. Environmental Noise Guidelines for the European Region
WHO Regional Office for Europe: Copenhagen, Denmark, 2018
Available online: https://www.euro.who.int/__data/assets/pdf_file/0008/383921/noise-guidelines-eng.pdf (accessed on 10 March 2022).
Nahorski, Z.
Holnicki, P. Consequences and Modeling Challenges Connected with Atmospheric Pollution. In Automatic Control, Robotics, and Information Processing
Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
Yu, Y.
Tong, Y.
Tang, W.
Yuan, Y.
Chen, Y. Identifying Spatiotemporal Interactions between Urbanization and Eco-Environment in the Urban Agglomeration in the Middle Reaches of the Yangtze River, China. Sustainability 2018, 10, 290. [Google Scholar] [CrossRef]
Triantakonstantis, D.
Stathakis, D. Examining urban sprawl in Europe using spatial metrics. Geocarto Int. 2015, 30, 1092–1112. [Google Scholar] [CrossRef]
Weng, Y.C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
Paidi, V.
Håkansson, J.
Fleyeh, H.
Nyberg, R.G. CO2 Emissions Induced by Vehicles Cruising for Empty Parking Spaces in an Open Parking Lot. Sustainability 2022, 14, 3742. [Google Scholar] [CrossRef]
Szopińska, K. Sustainable Urban Transport and the Level of Road Noise—A Case Study of the City of Bydgoszcz. Geomat. Environ. Eng. 2019, 13, 93–107. [Google Scholar] [CrossRef]
Gorzelnik, T.
Oleniacz, R. Suitability analysis of new air quality monitoring stations in Krakow as related to assessment of spatial and temporal variability of PM10 concentrations. Geomat. Environ. Eng. 2019, 13, 31. [Google Scholar] [CrossRef]
Vicente, B.
Rafael, S.
Rodrigues, V.
Relvas, H.
Vilaça, M.
Teixeira, J.
Borrego, C. Influence of different complexity levels of road traffic models on air quality modelling at street scale. Air Qual. Atmos. Health 2018, 11, 1217–1232. [Google Scholar] [CrossRef]
Zimakowska-Laskowska, M.
Laskowski, P. Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. Atmosphere 2022, 13, 401. [Google Scholar] [CrossRef]
Kwiecień, J.
Szopińska, K. Mapping Carbon Monoxide Pollution of Residential Areas in a Polish City. Remote Sens. 2020, 12, 2885. [Google Scholar] [CrossRef]
European Environment Agency. Air quality in Europe-2016 Report. Luxembourg Publications Office of the European Union. 2016. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2016 (accessed on 1 March 2022).
European Environment Agency. Air quality in Europe-2019 Report. Luxembourg Publications Office of the European Union. 2019. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 1 March 2022).
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0050 (accessed on 2 March 2022).
Available online: https://breathelife2030.org/news/chile-becomes-leader-clean-air/ (accessed on 1 February 2022).
Available online: https://breathelife2030.org/news/helping-cities-fight-climate-change-air-pollution/ (accessed on 1 February 2022).
Horálek, J.
de Smet, P.
de Leeuw, F.
Coňková, M.
Denby, B.
Kurfürst, P. Methodological Improvements on Interpolating European Air Quality Maps
Technical Paper 2009/16
The European Topic Centre on Air and Climate Change (ETC/ACC): Bilthoven, The Netherlands, 2010. [Google Scholar]
Qi, N.
Tan, X.
Wu, T.
Tang, Q.
Ning, F.
Jiang, D.
Xu, T.
Wu, H.
Ren, L.
Deng, W. Temporal and Spatial Distribution Analysis of Atmospheric Pollutants in Chengdu–Chongqing Twin-City Economic Circle. Int. J. Environ. Res. Public Health 2022, 19, 4333. [Google Scholar] [CrossRef]
Ahmed, M.
Xiao, Z.
Shen, Y. Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images. Remote Sens. 2022, 14, 1735. [Google Scholar] [CrossRef]
Liu, T.
You, S. Analysis and Forecast of Beijing’s Air Quality Index Based on ARIMA Model and Neural Network Model. Atmosphere 2022, 13, 512. [Google Scholar] [CrossRef]
Choi, H.-J.
Roh, Y.-M.
Lim, Y.-W.
Lee, Y.-J.
Kim, K.-Y. Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea. Atmosphere 2022, 13, 577. [Google Scholar] [CrossRef]
Targino, A.C.
Gibson, M.D.
Krecl, P.
Rodrigues, M.V.C.
Dos Santos, M.M.
de Paula Corrêa, M. Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ. Pollut. 2016, 218, 475–486. [Google Scholar] [CrossRef] [PubMed]
Zhan, Y.
Luo, Y.
Deng, X.
Zhang, K.
Zhang, M.
Grieneisen, M.L.
Di, B. Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef]
Pattinson, W.
Longley, I.
Kingham, S. Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmos. Environ. 2014, 94, 782–792. [Google Scholar] [CrossRef]
Hasenfratz, D.
Saukh, O.
Walser, C.
Hueglin, C.
Fierz, M.
Arn, T.
Beutel, J.
Thiele, L. Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 2015, 16, 268–285. [Google Scholar] [CrossRef]
Jerrett, M.
Arain, A.
Kanaroglou, P.
Beckerman, B.
Potoglou, D.
Sahsuvaroglu, T.
Morrison, J.
Giovis, C. A review and evaluation of intraurban air pollution exposure models. Exposure Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
Zheng, Y.
Liu, F.
Hsie, H.-P. U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), Chicago, IL, USA, 11–14 August 2013
pp. 1436–1444. [Google Scholar]
Zheng, Y.
Liu, T.
Wang, Y.
Zhu, Y.
Chang, E. Diagnosing New York City’s noises with ubiquitous data. In Proceedings of the 16th International Conference on Ubiquitous Computing (UbiComp), ACM, Seattle, WA, USA, 13–17 September 2014. [Google Scholar]
Beelen, R.
Hoek, G.
Pebesma, E.
Vienneau, D.
de Hoogh, K.
Briggs, D.J. Mapping of background air pollution at a fine spatial scale across the European Union. Sci. Total Environ. 2009, 407, 1852–1867. [Google Scholar] [CrossRef]
Li, J.
Jutzeler, A.
Faltings, B. Estimating Urban Ultrafine Particle Distributions with Gaussian Process Models. Res. Locate 2014, 14, 145–153. [Google Scholar] [CrossRef]
Jensen, S.S.
Berkowicz, R.
Hansen, H.S.
Hertel, O.A. Danish decision-support GIS tool for management of urban air quality and human exposures. Transp. Res. Part D Transp. Environ. 2001, 6, 229–241. [Google Scholar] [CrossRef]
Taghavi, M.
Cautenet, S.
Arteta, J. Impact of a highly detailed emission inventory on modeling accuracy. Atmos. Res. 2005, 74, 65–88. [Google Scholar] [CrossRef]
Ramos, R.V.
Blanco, A.C. Geostatistics for Air Quality Mapping: Case of Baguio city, Philippines. International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 42, 353–359. [Google Scholar] [CrossRef]
Kracht, O.
Gerboles, M. Spatial representativeness evaluation of air quality monitoring sites by point-centred variography. Int. J. Environ. Pollut. 2019, 65, 229–245. [Google Scholar] [CrossRef]
Grisotto, L.
Consonni, D.
Cecconi, L.
Catelan, D.
Lagazio, C.
Bertazzi, P.A.
Biggeri, A. Geostatistical integration and uncertainty in pollutant concentration surface under preferential sampling. Geospat. Health 2016, 11, 426. [Google Scholar] [CrossRef] [PubMed]
Li, Q.
Liang, J.
Wang, Q.
Chen, Y.
Yang, H.
Ling, H.
Luo, Z.
Hang, J. Numerical Investigations of Urban Pollutant Dispersion and Building Intake Fraction with Various 3D Building Configurations and Tree Plantings. Int. J. Environ. Res. Public Health 2022, 19, 3524. [Google Scholar] [CrossRef]
Rafael, S.
Correia, L.P.
Lopes, D.
Bandeira, J.
Coelho, M.C.
Andrade, M.
Miranda, A.I. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 2020, 712, 136546. [Google Scholar] [CrossRef]
Badyda, A.J.
Dabrowiecki, P.
Lubinski, W.
Czechowski, P.O.
Majewski, G.
Chcialowski, A.
Kraszewski, A. Influence of traffic-related air pollutants on lung function. In Neurobiology of Respiration
Pokorski, M., Ed.
Springer: Dordrecht, The Netherlands, 2013
pp. 229–235. [Google Scholar] [CrossRef]
Bieda, A.
Bydłosz, J.
Parzych, P.
Pukanská, K.
Wójciak, E. 3D Technologies as the Future of Spatial Planning: The Example of Krakow. Geomat. Environ. Eng. 2020, 14, 15–33. [Google Scholar] [CrossRef]
Rabiei-Dastjerdi, H.
Mohammadi, S.
Saber, M.
Amini, S.
McArdle, G. Spatiotemporal Analysis of NO2 Production Using TROPOMI Time-Series Images and Google Earth Engine in a Middle Eastern Country. Remote Sens. 2022, 14, 1725. [Google Scholar] [CrossRef]
Khomenko, S.
Cirach, M.
Pereira-Barboza, E.
Mueller, N.
Barrera-Gómez, J.
Rojas-Rueda, D.
de Hoogh, K.
Hoek, G.
Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
Główny Inspektorat Ochrony Środowiska. Available online: https://powietrze.gios.gov.pl/ (accessed on 10 February 2022).
UNECE. Key Performance Indicators for Smart Sustainable Cities to Assess the Achievement of Sustainable Development Goals, 1603
UNECE: Geneva, Switzerland, 2015. [Google Scholar]
Idea Kielce Web Portal. Available online: https://idea.kielce.eu/ (accessed on 10 February 2022).
Smog Kielce Web Portal. Available online: https://smogkielce.pl/ (accessed on 10 February 2022).
Google Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2#description (accessed on 3 February 2022).
Annual Assessment of Air Quality in the Świętokrzyskie Voivodeship. Voivodship Report for 2020. Chief Inspectorate of Environmental Protection. Available online: https://powietrze.gios.gov.pl/pjp/rwms/publications/card/1442 (accessed on 5 February 2022).
Resolution no. XXXIX/758/2021 of the Kielce City Council of 21 January 2021 on the Adoption of the Programme for Limiting Low-Altitude Emission in Kielce City. Available online: http://www.um.kielce.pl/gfx/kielce2/userfiles/images/energia/uchwala_xxxix7582021.pdf (accessed on 5 February 2022).
Hunter, K.
Bestman, A.
Dodd, M.
Prinsloo, M.
Mtambeka, P.
van As, S.
Peden, M.M. Overloaded and Unrestrained: A Qualitative Study with Local Experts Exploring Factors Affecting Child Car Restraint Use in Cape Town, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 4974. [Google Scholar] [CrossRef] [PubMed]
Stojanov, R.
Kelman, I.
Ullah, A.A.
Duží, B.
Procházka, D.
Blahůtová, K.K. Local Expert Perceptions of Migration as a Climate Change Adaptation in Bangladesh. Sustainability 2016, 8, 1223. [Google Scholar] [CrossRef]
Babbie, E. Badania Społeczne w Praktyce
PWN: Warszawa, Poland, 2003
pp. 198–199. ISBN 83-01-14068-2. [Google Scholar]
Mayntz, R.
Holm, K.
Hübner, P. Wprowadzenie do Metod Socjologii Empirycznej
PWN: Warszawa, Poland, 1985
ISBN 83-01-05254-6. [Google Scholar]
Suhanek, M.
Durek, I. Implementation of Bipolar Adjective Pairs in Analysis of Urban Acoustic Environments. Promet. Traffic Transp. 2016, 28, 461–470. [Google Scholar] [CrossRef]
Jia, D.
Misawa, T.
Takamatsu, M.
Hirobayashi, S. The optimum colour temperature for illumination of Japanese-style gardens in summer and winter. Lighting Res. Technol. 2019, 51, 8298. [Google Scholar] [CrossRef]
Neto, O.A.
Jeong, S.
Munakata, J.
Yoshida, Y.
Ogawa, T.
Yamamura, S. Physical element effects in public space attendance. J. Asian Archit. Build. Eng. 2016, 15, 479–485. [Google Scholar] [CrossRef]
Baczyńska, E.
Lorenc, M.W.
Kaźmierczak, U. The Landscape Attractiveness of Abandoned Quarries. Geoheritage 2018, 10, 271–285. [Google Scholar] [CrossRef]
Middel, A.
Selover, N.
Hagen, B.
Chhetri, N. Impact of shade on outdoor thermal comfort—A seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016, 60, 1849–1861. [Google Scholar] [CrossRef] [PubMed]
Kinoshita, Y.
Tsukanaka, S.
Nakama, T. Kansei Stroll Map Based on the Visualization of Streetscape Impressions. Trans. Hum. Interface Soc. 2016, 18, 45. [Google Scholar] [CrossRef]
Hełdak, M.
Kurt Konakoglu, S.S.
Kurdoglu, B.C.
Goksal, H.
Przybyła, B.
Kazak, J.K. The Role and Importance of a Footbridge Suspended over a Highway in the Opinion of Its Users—Trabzon (Turkey). Land 2021, 10, 340. [Google Scholar] [CrossRef]
Zhao, Z.
Gan, H.
Qian, X.
Leng, J.
Wang, Y.
Wu, P. Riverside Greenway in Urban Environment: Residents’ Perception and Use of Greenways along the Huangpu River in Shanghai, China. Int. J. Environ. Res. Public Health 2021, 18, 1120. [Google Scholar] [CrossRef]
Malm, W.
MacFarland, K.K.
Molenar, J.
Daniel, T. Human perception of visual air quality (layered haze). In Managing Air Quality and Scenic Resources at National Parks and Wilderness Areas
Routledge: London, UK, 2019
pp. 27–40. [Google Scholar] [CrossRef]
Balcerzak, B.
Ścibor, M.
Malinowska-Cieślik, M. Percepcja jakości powietrza oraz jej skutków zdrowotnych jako przedmiot badań w obszarze zdrowia publicznego. Zdr. Publiczne Zarządzanie 2012, 10, 13–24. [Google Scholar] [CrossRef]
Grossberndt, S.
Schneider, P.
Liu, H.Y.
Fredriksen, M.
Castell, N.
Syropoulou, P.
Bartonova, A. Public Perception of Urban Air Quality Using Volunteered Geographic Information Services. Urban Plan. 2020, 5, 45–58. [Google Scholar] [CrossRef]
Liu, H.
Kobernus, M.
Liu, H. Public perception survey study on air quality issues in Wuhan, China. J. Environ. Prot. 2017, 8, 1194. [Google Scholar] [CrossRef]
Van Khuc, Q.
Phu, T.V.
Luu, P. Dataset on the Hanoian suburbanites’ perception and mitigation strategies towards air pollution. Data Brief 2020, 33, 106414. [Google Scholar] [CrossRef]
Chen, M.
Dai, F.
Yang, B.
Zhu, S. Effects of neighborhood green space on PM2.5 mitigation: Evidence from five megacities in China. Build. Environ. 2019, 156, 33–45. [Google Scholar] [CrossRef]
Duraku, R.
Atanasova, V.
Krstanoski, N. Building and Calibration Transport Demand Model in Anamorava Region. Teh. Vjesn. 2019, 26, 1784–1793. [Google Scholar] [CrossRef]
Web Portal for Kielce City. Available online: https://gis.kielce.eu/ (accessed on 15 February 2022).
Web Portal for Poland. Available online: https://mapy.geoportal.gov.pl/ (accessed on 15 February 2022).
Web Portal for Poland. Available online: https://www.openstreetmap.org/ (accessed on 15 February 2022).
Resolution 2016. Resolution of the Minister of Transport and Marine Economy dated 2 March 1999 on the technical conditions to be fulfilled by public roads and their placement (Uniform text). Journal of Laws, 2016
item 124.
Resolution 2019. Resolution of the Minister of Infrastructure dated 12 April 2002 on technical requirements to be fulfilled by buildings and their placement (Uniform text). Journal of Laws, 2019
item 1065.
Available online: https://www.cerc.co.uk/ (accessed on 2 February 2022).
Available online: https://www.epa.gov/scram/air-quality-models (accessed on 2 February 2022).
NUMBEO. Available online: https://www.numbeo.com/pollution/in/Kielce (accessed on 2 February 2022).
Web Portal with Price Offers of Residential Real Estate. Available online: https://www.morizon.pl/mapa/mieszkania/kielce/ (accessed on 2 February 2022).
Web Portal with Price Offers of Residential Real Estate. Available online: https://ceny.szybko.pl/Kielce-ceny-mieszkan.html (accessed on 2 February 2022).
Zaręba, M.
Danek, T. Analysis of Air Pollution Migration during COVID-19 Lockdown in Krakow, Poland. Aerosol Air Qual. Res. 2022, 22, 210275. [Google Scholar] [CrossRef]
Turek, T.
Diakowska, E.
Kamińska, J.A. Has COVID-19 Lockdown Affected on Air Quality?—Different Time Scale Case Study in Wrocław, Poland. Atmosphere 2021, 12, 1549. [Google Scholar] [CrossRef]