Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[115910] Artykuł:

Determination of the Electricity Storage Power and Capacity for Cooperation with the Microgrid Implementing the Peak Shaving Strategy in Selected Industrial Enterprises

Czasopismo: Energies   Tom: 15, Zeszyt: 4793, Strony: 1-20
ISSN:  1996-1073
Opublikowano: Lipiec 2022
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Rafał Kużniak Niespoza "N" jednostkiInżynieria mechaniczna25.00.00  
Artur Pawelec orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Nauki o zarządzaniu i jakości25140.00140.00  
Artur Bartosik orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Inżynieria mechaniczna2570.0070.00  
Marek Pawełczyk orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Inżynieria mechaniczna2570.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

battery energy storage system  BESS management  peak shaving  microgrid  energy efficiency 



Abstract:

The capacity limitations of distribution networks, the increasing demands for electricity installation in terms of electricity quality parameters, and the development of electromobility all increase the need to implement systems in order to stabilize and regulate loads for end users. Battery Energy Storage Systems (BESSs), that operate in internal microgrids of enterprises, allow smoothing of electrical power consumption profiles by actively reducing peak demand power. By using BESSs to implement a peak shaving strategy to reduce the peak power consumption of a company in an external network, energy efficiency can be improved by reducing contractual capacity. The aim of this study is to determine the conditions for the use of energy storage, in order to implement a peak shaving strategy for which the installation of the enterprise microgrid is economically efficient. The analysis of the operating conditions of the BESS should take into account the size of the energy storage, the characteristics of the demand profile for the demand systems, the charges related to electricity, and the costs of electricity storage. In the study, the size of the energy storage was related to the power and electrical capacity of the BESS that was used to implement the peak shaving strategy. The article presents the results of research on the method for determining an effective capacity and power of BESSs for enterprise microgrid systems. The technical and cost limitations of the actual microgrid system, which affected the decrease in economic efficiency of the peak shaving strategy in the company research, were taken into account. The simulations of the operation of the electricity storage system, based on real data of the demand of production companies, were based on the rules and market conditions in Poland.



B   I   B   L   I   O   G   R   A   F   I   A
1. Jamali, A.A.
Nor, N.M.
Ibrahim, T. Energy storage systems and their sizing techniques in power system—A review. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015
pp. 215–220, ISBN 978-1-4799-8598-2/15. [CrossRef]
2. Ross, M.
Hidalgo, R.
Abbey, C.
Joós, G. Analysis of Energy Storage Sizing and Technologies. In Proceedings of the 2010 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 25–27 August 2010. [CrossRef]
3. Paska, J.
Kłos, M. Magazynowanie Energii Elektrycznej—Technologie, Zastosowania, Koszty, POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej, Portal Polskiego Instytutu Magazynowania E Energii. Available online: https://orka.sejm.gov.pl/opinie8.nsf/nazwa/363_20161019_1/$file/363_20161019_1.pdf (accessed on 17 November 2016).
4. Jayashree, S.
Malarvizhi, K. Methodologies for Optimal Sizing of Battery Energy Storage in Microgrids: A Comprehensive Review. In Proceedings of the 2020 International Conference on Computer Communication and Informatics (ICCCI-2020), Coimbatore, India, 22–24 January 2020. [CrossRef]
5. Faisal, M.
Hannan, M.A.
Ker, P.J.
Hussain, A.
Mansor, M.B.
Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. Special Section on Advanced Energy Storage Technologies and Their Applications
IEEE Access: Piscataway, NJ, USA, 2018
pp. 35143–35164. [CrossRef]
6. Kharseh, M.
Wallbaum, H. How Adding a Battery to Grid-Connected Photovoltaic System Can Increases Its Economic Perfor- mance: Compare Different Scenarios. Preprints 2018, 2018, 110616. [CrossRef]
7. Beaudin, M.
Zareipour, H.
Schellenberglabe, A.
Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [CrossRef]
Energies 2022, 15, 4793 19 of 20
8. Delfino, F.
Procopio, R.
Rossi, M.
Brignone, M.
Robba, M.
Bracco, S. Microgrid Design and Operation: Toward Smart Energy in Cities
Artech House: London, UK, 2018
ISBN 978-1-63081-150-1.
9. Tseng, S.
Li, J.
Lee, M.
Wang, B.
Ji, F.
Bai, B. A software defined energy storage: Architecture, topology, and reliability. In Proceedings of the 2017 China International Electrical and Energy Conference (CIEEC), Beijing, China, 25–27 October 2017
pp. 737–741. [CrossRef]
10. Mongird, K.
Viswanathan, V.V.
Balducci, P.J.
Alam MJ, E.
Fotedar, V.
Koritarov, V.S.
Hadjerioua, B. Energy Storage Technology and Cost Characterization Report
Pacific Northwest National Laboratory, Argonne National Laboratory, Oak Ridge National Laboratory, supported by the HydroWIRES Initiative of DOE’s Water Power Technologies Office (WPTO)
Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 2019. [CrossRef]
11. Opathella, C.
Elkasrawy, A.
Mohamed, A.A.
Venkatesh, B. A Novel Capacity Market Model with Energy Storage. IEEE Trans. Smart Grid 2019, 10, 5283–5293. [CrossRef]
12. Zablocki, A. Fact Sheet|Energy Storage, EESI, 22 February 2019. Available online: https://www.eesi.org/papers/view/energy- storage-2019 (accessed on 10 November 2021).
13. Olabi, A.G. Renewable energy and energy storage systems. Energy 2017, 136, 1–6. [CrossRef]
14. Behabtu, H.A.
Messagie, M.
Coosemans, T.
Berecibar, M.
Fante, K.A.
Kebede, A.A.
van Mierlo, J. A Review of Energy Storage
Technologies. Application Potentials in Renewable Energy Sources. Grid Integration. Sustainability 2020, 12, 10511. [CrossRef]
15. Alharbi, H.
Bhattacharya, K. Stochastic Optimal Planning of Battery Energy Storage Systems for Isolated Microgrids. IEEE Trans.
Sustain. Energy 2018, 9, 211–227. [CrossRef]
16. Bahramirad, S.
Daneshi, H. Optimal Sizing of Smart Grid Storage Management System in a Microgrid. In Proceedings of the
2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012. [CrossRef]
17. Barcellona, S.
Piegari, L.
Tironi, E.
Musolino, V. A Methodology for a Correct Sizing of Electrochemical Storage Devices. In Proceedings of the 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, Australia, 15–18
November 2015. [CrossRef]
18. Nanewortor, X.
Janik, P.
Waclawek, Z.
Leonowicz, Z. Optimal Sizing of Renewable Energy Plant–Storage System for Network
Support. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering, Florence,
Italy, 7–10 June 2016
ISBN 978-1-5090-2320-2/16. [CrossRef]
19. Alsaidan, I.
Khodaei, A.
Gao, W. A Comprehensive Battery Energy Storage Optimal Sizing Model for Microgrid Applications.
Trans. Power Syst. 2018, 33, 3968–3980. [CrossRef]
20. Dong, J.
Gao, F.
Guan, X.
Zhai, Q.
Wu, J. Storage Sizing with Peak-Shaving Policy for Wind Farm Based on Cyclic Markov
Chain Model. IEEE Trans. Sustain. Energy 2017, 8, 978–989. [CrossRef]
21. Baker, K.
Hug, G.
Li, X. Energy Storage Sizing Taking into Account Forecast Uncertainties and Receding Horizon Operation.
IEEE Trans. Sustain. Energy 2016, 8, 331–340. [CrossRef]
22. Ke, X.
Lu, N.
Jin, C. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources. In
Proceedings of the 2014 IEEE PES General Meeting/Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014.
[CrossRef]
23. Ma, T.
Lashway, C.R.
Song, Y.
Mohammed, O. Optimal Renewable Energy Farm and Energy Storage Sizing Method for
Future Hybrid Power System. In Proceedings of the 17th International Conference on Electrical Machines and Systems (ICEMS),
Hangzhou, China, 22–25 October 2014
pp. 2827–2832. [CrossRef]
24. Zhang, J.
Guo, D.
Shanxi, F.W.
Zuo, Y.
Zhang, H. Research on Energy Management Strategy for Islanded Microgrid Based on
Hybrid Storage Device. In Proceedings of the International Conference on Renewable Energy Research and Applications, Madrid,
Spain, 20–23 October 2013
ISBN 978-4799-1464-7/13. [CrossRef]
25. Dhabi, A. The International Renewable Energy Agency (IRENA): Electricity Storage and Renewables, Costs and Markets to 2030.
October 2017. Available online: https://www.irena.org/publications/2017/oct/electricity-storage-and-renewables-costs-and-
markets (accessed on 10 November 2021).
26. Barnes, F.S.
Levine, J.G. Large Energy Storage Systems Handbook
Taylor & Francis Inc.: Oxfordshire, UK, 2011
ISBN 978-1-4200-
8601-0. [CrossRef]
27. Amrouche, S.O.
Rekioua, D.
Rekioua, T.
Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrog.
Energy 2016, 41, 20914–20927. [CrossRef]
28. Rahmann, C.
Mac-Clure, B.
Vittal, V.
Valencia, F. Break-Even Points of Battery Energy Storage Systems for Peak Shaving
Applications. Energies 2017, 10, 833. [CrossRef]
29. Yang, Y.
Li, H. Performance analysis of LiFePO4 battery energy storage for utility-scale PV system. In Proceedings of the 2014
IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014
pp. 414–419. [CrossRef]
30. Moseley, P.T.
Garche, J. Electrochemical Energy Storage for Renewable Sources and Grid Balancing
Elsevier Science: Amster- dam, The Netherlands, 2014
ISBN 9780444626103. Available online: https://www.researchgate.net/publication/291249437_
Electrochemical_Energy_Storage_for_Renewable_Sources_and_Grid_Balancing (accessed on 10 November 2021).
31. Li, J.
Chen, B.
Zhou, J.
Mo, Y. The optimal planning of wind power capacity and energy storage capacity based on the bilinear interpolation theory. In Smart Power Distribution Systems
Academic Press: Cambridge, MA, USA, 2019
pp. 411–445. [CrossRef]
32. Ganesan, S.
Subramaniam, U.
Ghodke, A.A.
Elavarasan, R.M.
Raju, K.
Bhaskar, M.S. Investigation on Sizing of Voltage Source for a Battery Energy Storage System in Microgrid with Renewable Energy Sources. IEEE Access 2020, 8, 188861–188874. [CrossRef]

Energies 2022, 15, 4793 20 of 20
33. Evans, A.
Strezov, V.
Evans, T.J. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 2012, 16, 4141–4147. [CrossRef]
34. Naidu, B.R.
Panda, G.
Babu, B.C. Dynamic energy management and control of a grid-interactive DC microgrid system. In Smart Power Distribution Systems Control, Communication, and Optimization
Academic Press: Cambridge, MA, USA, 2019
pp. 41–67. [CrossRef]
35. Bayram, I.S.
Abdallah, M.
Tajer, A.
Qaraqe, K. Energy Storage Sizing for Peak Hour Utility Applications. In Proceedings of the2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015
pp. 770–775, ISBN 978-1-4673- 6432-4/15. [CrossRef]
36. Chudy, D.
Les ́niak, A.
Łódzka, P.
Elektroenergetyki, I. Wykorzystanie Magazynowania Energii w Celu Optymalizacji Kosztów Zasilania Zakładu Przemysłowego, Energia Gigawat. 11 December 2020. Available online: https://gigawat.info/artykul/items/ wykorzystanie-magazynowania-energii-w-celu-optymalizacji-kosztow-zasilania-zakladu-przemyslowego.html (accessed on 10 November 2021).
37. Martins, R.
Hesse, H.C.
Jungbauer, J.
Vorbuchner, T.
Musilek, P. Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications. Energies 2018, 11, 2048. [CrossRef]
38. Gao, N.
Lin, X.
Wu, W.
Blaabje, F. Grid Current Feedback Active Damping Control Based on Disturbance Observer for Battery Energy Storage Power Conversion System with LCL Filter. Energies 2021, 14, 1482. [CrossRef]
39. Kwon, S.
Xu, Y.
Gautam, N. Meeting Inelastic Demand in Systems With Storage and Renewable Sources. IEEE Trans. Smart Grid 2017, 8, 1619–1629. [CrossRef]
40. Sadeghi, A.
Torbaghan, S.S.
Gibescu, M. Benefits of Clearing Capacity Markets in Short Term Horizon: The Case of Germany. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 27–29 June 2018
pp. 1–5. [CrossRef]
41. Siface, D. Optimal Sizing of a BESS Providing Multiple Services to the System: A Stochastic Approach. In Proceedings of the 2020 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16–18 September 2020
pp. 1–5. [CrossRef]
42. Ge, Y.
Ye, H.
Loparo, K.A. Agent-Based Privacy Preserving Transactive Control for Managing Peak Power Consumption. IEEE Trans. Smart Grid 2020, 11, 4883–4890. [CrossRef]
43. Regulation to the Energy Act Rozporza ̨dzenie Ministra Energii z dnia 6 Marca 2019 r. w Sprawie Szczegółowych Zasad Kształtowania i Kalkulacji Taryf Oraz Rozliczen ́ w Obrocie Energia ̨ Elektryczna ̨
Climate and Environment Ministry: Wawelska, Poland, 2019.
44. The Act of Energy Low in Poland April 10, 1997.
45. Regulation to the Energy Act Rozporza ̨dzenie Ministra Klimatu I S ́rodowiska z dnia 9 Listopada 2020 r. w Sprawie Pobierania Opłaty
Mocowej i Wyznaczania Godzin Doby Przypadaja ̨cych na Szczytowe Zapotrzebowanie na moc w Systemie
Climate and Environment
Ministry: Wawelska, Poland, 2020.
46. Rotella Junior, P.
Rocha, L.C.S.
Morioka, S.N.
Bolis, I.
Chicco, G.
Mazza, A.
Janda, K. Economic Analysis of the Investments in
Battery Energy Storage Systems: Review and Current Perspectives. Energies 2021, 14, 2503. [CrossRef]
47. Ertugrul, N. Battery Storage Technologies, Applications and Trend in Renewable Energy. In Proceedings of the 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 14–16 November 2016
ISBN 978-1-5090-
5200-4/16. [CrossRef]