Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[115760] Artykuł:

Machine Learning Algorithms for Detection and Classifications of Emotions in Contact Center Applications

Czasopismo: Sensors (Basel)   Tom: 5311, Zeszyt: 22(14)
ISSN:  1424-8220
Opublikowano: Lipiec 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Mirosław Płaza orcid logo WEAiIKatedra Systemów Informatycznych *Niezaliczony do "N"Informatyka techniczna i telekomunikacja17100.00100.00  
Sławomir Trusz Niespoza "N" jednostki017.00.00  
Justyna Kęczkowska orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne17100.00100.00  
Ewa Boksa Niespoza "N" jednostki017.00.00  
Sebastian Sadowski Niespoza "N" jednostki017.00.00  
Zbigniew Koruba orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Takzaliczony do "N"Inżynieria mechaniczna17100.00100.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


DOI LogoDOI    
Keywords:

callcontact center  emotions recognition  virtual assistant  voicebot  chatbot 



Abstract:

Over the past few years, virtual assistant solutions used in Contact Center systems are gaining popularity. One of the main tasks of the virtual assistant is to recognize the intentions of the customer. It is important to note that quite often the actual intention expressed in a conversation is also directly influenced by the emotions that accompany that conversation. Unfortunately, scientific literature has not identified what specific types of emotions in Contact Center applications are relevant to the activities they perform. Therefore, the main objective of this work was to develop an Emotion Classification for Machine Detection of Affect-Tinged Conversational Contents dedicated directly to the Contact Center industry. In the conducted study, Contact Center voice and text channels were considered, taking into account the following families of emotions: anger, fear, happiness, sadness vs. affective neutrality of the statements. The obtained results confirmed the usefulness of the proposed classification—for the voice channel, the highest efficiency was obtained using the Convolutional Neural Network (accuracy, 67.5%; precision, 80.3; F1-Score, 74.5%), while for the text channel, the Support Vector Machine algorithm proved to be the most efficient (accuracy, 65.9%; precision, 58.5; F1-Score, 61.7%).