Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[115150] Artykuł:

Evaluation of Heat Transfer Rates through Transparent Dividing Structures

Czasopismo: Energies   Tom: 15, Zeszyt: 13, Strony: 4910
ISSN:  1996-1073
Opublikowano: 2022
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Borys Basok Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Borys Davydenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Vladimir G. Novikov Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Anatoliy Pavlenko orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka14140.00140.00  
Marina P. Novitska Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Karolina Sadko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Svetlana M. Goncharuk Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

mathematical modeling  heat transfer coefficient  double-pane window  window thermal resistance  gap between panes 


Keywords:

mathematical modeling  heat transfer coefficient  double-pane window  window thermal resistance  gap between panes 



Streszczenie:

In this paper, heat transfer and airflow in the gap between the panes of a central part of a double-glazed window were investigated using mathematical modeling. It has been shown that the cyclical airflow regime, in the form of ascending and descending boundary layers, loses stability and changes to a vortex regime under certain conditions depending on the gap width, transverse temperature gradient, inclination angle and window height, as in Rayleigh–Bernard convection cells. The study made it possible to determine the critical values of the Rayleigh number (Ra) at which the air flow regime in the gap between the panes of a window changes (in the range of values 6.07 × 103 < Ra < 6.7 × 103). As a result of the modeling, the values of the thermal resistance of a central part of double-glazed window were determined as a function of the width of the gap between the panes, the angle of inclination and the transverse temperature gradient.




Abstract:

In this paper, heat transfer and airflow in the gap between the panes of a central part of a double-glazed window were investigated using mathematical modeling. It has been shown that the cyclical airflow regime, in the form of ascending and descending boundary layers, loses stability and changes to a vortex regime under certain conditions depending on the gap width, transverse temperature gradient, inclination angle and window height, as in Rayleigh–Bernard convection cells. The study made it possible to determine the critical values of the Rayleigh number (Ra) at which the air flow regime in the gap between the panes of a window changes (in the range of values 6.07 × 103 < Ra < 6.7 × 103). As a result of the modeling, the values of the thermal resistance of a central part of double-glazed window were determined as a function of the width of the gap between the panes, the angle of inclination and the transverse temperature gradient.