Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114860] Artykuł:

Effect of Deflocculant Addition on Energy Savings in Hydrotransport in the Lime Production Process

(Wpływ dodatku deflokulanta na efektywność energetyczną hydrotransportu w procesie produkcji wapna)
Czasopismo: Energies Special Issue: Numerical Heat Transfer and Fluid Flow 2022   Tom: 15, Zeszyt: 11, Strony: 1-12
ISSN:  1996-1073
Opublikowano: Maj 2022
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Beata Jaworska-Jóźwiak orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Inżynieria mechaniczna50140.00140.00  
Marek Dziubiński Niespoza "N" jednostki50.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

hydrotransport  energy savings  Bingham plastic fluids  deflocculant  pressure drop 



Abstract:

The subject of the research was limestone hydromixture consisting of particles of a mean size of 45.5 μm conveyed by water in a pipeline of a total length of 632 m. In the paper, the results of rheological measurements of tested hydromixtures after the application of deflocculant consisting of waste product from the lime production process in the form of mineral particles and commonly known dispersant were presented. Calculations of pressure drop including hydromixtures with volume concentrations in the range of 21.30–50.00%, and density ranging from 1140–1410 kg/m3 in a pipeline of 200 mm diameter are presented. A decrease in friction losses in the flow in the pipeline of hydromixtures with different mass concentrations after the addition of deflocculant was observed. The study revealed that the addition of deflocculant resulted in a reduction of friction in the pipeline, enabling the pumping of hydromixtures with twice higher solids concentrations than originated from industrial installation, with a lower volumetric flow rate. This resulted in a decrease of the power consumption of the motor driving the pump, and obtained significant energy savings in the hydromixture transport process. The maximum energy saving achieved was equal to 58%.



B   I   B   L   I   O   G   R   A   F   I   A
Newitt D.M., Richardson J.F., Abbot M. Turtle R.B., Hydraulic Conveying of Solids in Horizontal Pipes. Trans. Inst. Chem. Eng. 1955, 33, 93–110. [Google Scholar]
Parzonka W., Kenchington J.M. Charles M.E., Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on the deposit velocity. Can. J. Chem. Eng. 1981, 59, 291–296. [Google Scholar] [CrossRef]
Shrikant Dhodapkar K.J. Shenggen H., Fluid-Solid Transport in Ducts. In Multiphase Flow Handbook Clayton, T.C., Ed. Taylor and Francis Group: London, UK, 2006 Chapter 4 pp. 1–101. [Google Scholar]
Chhabra R.P., Richardson J.F., Non-Newtonian Flow and Applied Rheology, 2nd ed. Butterworth-Heinemann: Oxford, UK, 2008 pp. 111–123, 142–148. [Google Scholar]
Abd Al Aziz A.I., Mohamed H.I., A Study of the Factors Affecting Transporting Solid—Liquid Suspension through Pipelines. Open J. Fluid Dyn. 2013, 3, 152–162. [Google Scholar] [CrossRef]
Matousek V., Pressure drops and flow patterns in sand-mixture pipes. Exp. Therm. Fluid Sci. 2002, 26, 693–702. [Google Scholar] [CrossRef]
Hashemi S.A., Wilson K.C., Sanders, R.S., Specific energy consumption and optimum operating condition for coarse-particle slurries. Powder Technol. 2014, 262, 183–187. [Google Scholar] [CrossRef]
Wu J., Graham L., Wang S., Parthasarathy R., Energy efficient slurry holding and transport. Miner. Eng. 2010, 23, 705–712. [Google Scholar] [CrossRef]
Edelin D., Czujko P.C., Castelain C., Josset C., Fayolle F., Experimental determination of the energy optimum for the transport of floating particles in pipes. Exp. Therm. Fluid Sci. 2015, 68, 634–643. [Google Scholar] [CrossRef]
Ihle C.F., The least energy and water cost condition for turbulent, homogeneous pipeline slurry transport. Int. J. Miner. Process. 2016, 148, 59–64. [Google Scholar] [CrossRef]
Shook C.A., Roco M.C., Slurry Flow. Principles and Practice, Butterworth-Heinemann: Oxford, UK, 1991 p. 35. [Google Scholar]
Jurban B.A., Zurigat Y.H., Goosen M.F.A., Drag Reducing Agents in Multiphase Flow Pipelines: Recent Trends and Future Needs. Pet. Sci. Technol. 2005, 23, 1403–1424. [Google Scholar]
He M., Wang Y., Forssberg E., Parameter studies on the rheology of limestone slurries. Int. J. Miner. Process. 2006, 78, 63–77. [Google Scholar] [CrossRef]
Deckers J., Vleugels J., Kruth J., Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Technol. 2014, 5, 245–260. [Google Scholar]
Silva R., Garcia F.A.P., Faia P.M.G.M., Rasteiro, M.G. Settling Suspensions Flow Modelling: A Review. Powder Part. J. 2015, 32, 41–56. [Google Scholar] [CrossRef]
Dziubiński M., A general correlation for two-phase pressure drop in intermittent flow of gas and non-Newtonian liquid mixtures in a pipe. Chem. Eng. Res. Des. 1995, 73, 529–534. [Google Scholar] [CrossRef]
Chhabra R., Dziubiński M., Predicting two phase pressure drop for the flow of gas/non-Newtonian liquid mixtures in horizontal pipes. Int. J. Fluid Mech. 1989, 2, 63–69. [Google Scholar]
Richardson J.F., Dziubiński M., Two-phase flow of gas and non-Newtonian liquids in horizontal pipes. Superficial gas velocity for maximum power saving. J. Pipelines 1985, 5, 107–111. [Google Scholar]
Vlasak P., Chara Z., Konfrst J., Krupicka J., Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe. Can. J. Chem. Eng. 2016, 94, 1040–1047. [Google Scholar] [CrossRef]
Naveh R., Tripathi N.M., Kalman H., Experimental pressure drop analysis for horizontal dilute phase particle-fluid flows. Powder Technol. 2017, 321, 355–368. [Google Scholar] [CrossRef]
Darby R., Melson J.M., A Friction Factor Equation for Bingham Plastic Slurries and Suspensions for All Flow Regimes. Chem. Eng. 1981, 59–61. [Google Scholar]
Darby R., Predict Friction Loss in Slurry Pipes. In Chemical Engineering ABI/I-NFORM Global: New York, NY, USA, 1992 p. 116. Available online: https://www.researchgate.net/publication/292650993_Predict_friction_loss_in_slurry_pipes (accessed on 29 March 2022).
Chhabra R.P., Farooqi S.I., Richardson J.F., Isothermal two-phase flow of air and aqueous polymer solutions in a smooth horizontal pipe. Chem. Eng. Res. Des. 1983, 62, 22–32. [Google Scholar]
He M., Wang Y., Forssberg E., Slurry rheology in wet ultrafine grinding of industrial minerals: A review. Powder Technol. 2004, 147, 94–112. [Google Scholar] [CrossRef]
Wang Y., Yu B., Zakin J.L., Shi H., Review on Drag Reduction and Its Heat Transfer by Additives. Adv. Mech. Eng. 2011, 8749. [Google Scholar] [CrossRef]
Zhou Y.B., Xu N., Ma N., Li F.C., Wei J.J., Yu B., On Relationships among the Aggregation Number, Rheological Property, and Turbulent Drag-Reducing Effect of Surfactant Solutions. Adv. Mech. Eng. 2011, 345328. [Google Scholar] [CrossRef]
Matras Z., Kopiczak B., Intensification of drag reduction effect by simultaneous addition of surfactants and high molecular polymer into the solvent. Chem. Eng. Res. Des. 2015, 96, 35–42. [Google Scholar] [CrossRef]
Sikorski C.F., Lehman R.L., Shepherd J.A., The effects of viscosity reducing chemical additives on slurry rheology and pipeline transport performance for various mineral slurries. In Proceedings of the Seventh International Technical Conference on Slurry Transportation, Nevada, NV, USA, 23–26 March 1982. [Google Scholar]