Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114820] Artykuł:

Influence of the heat insulation layer on the thermally stressed condition of the facade wall

Czasopismo: Production Engineering Archives Journal   Tom: 28 (2022), Zeszyt: 2, Strony: 123-131
ISSN:  2353-5156
Opublikowano: 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Borys Basok Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Borys Davydenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  
Hanna Koshlak orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka7070.0035.00  
Oksana Lysenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka10.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

temperature stress concrete facade wall heating system numerical modeling  heat-insulating layer 



Abstract:

The temperature-stress state of the concrete facade wall with a window opening, which is the external enclosing structure of the room with a steel heating device, was investigated by the method of numer-ical modeling. Estimated studies were performed for winter period when the heating system of the building is functioning. According to the results of solving the system of equations of thermal stress and equation of thermal conductivity, the temperature distribution over the wall volume and distribu-tion of normal and tangential stresses were determined. Areas of the wall where these stresses are maximum were identified. The research was performed for cases of both, absence and presence of a heat-insulating layer on the outer surface of the facade wall. From comparison of the results obtained for these two options, it follows that the external thermal insulation coating not only helps to reduce dissipative heat loss through the facade wall, but also reduces the absolute values of stresses in the concrete wall arising resulting from temperature deformations. In some cases, the sign of stresses changes from stretching (wall without external insulation) to compressive (wall with insulation).



B   I   B   L   I   O   G   R   A   F   I   A
Abahri, K., Belarbi, R., Trabelsi, A., 2011. Contribution to analytical and nu-merical study of combined heat and moisture transfers in porous building materials, Building and environment. 46 (7), 1354–1360, DOI: 10.1016/j.buildenv.2010.12.020 Alshboul, A.A., Alkurdi, N.Y., 2019. Enhancing the Strategies of Climate Re-sponsive Architecture. The Study of Solar Accessibility for Buildings Standing on Sloped Sites. Modern Applied Science, 13 (1), 69-84, DOI: 10. 5539/mas.v13n1p69 Aksamija, A., 2015., Design methods for sustainable, high-performance building facades. Advances in Building Energy Research, 10(2), 1-23, DOI: 10.5539/mas.v13n1p69 Albatayneh, A., Alterman D., Page A., Moghtaderi B., 2018. The significance of building design for the climate. Environmental and Climate Technol-ogies, 22, 165-178, DOI: 10.2478/rtuect-2018-0011 Albatayneh, A., 2021. Optimisingthe parameters of a building envelope in the east mediterranean Saharan, cool climate zone. Buildings, 11, 43, DOI: 10.3390/buildings11020043 Alexandrovsky, S.V., 1966. Calculation of concrete and reinforced concrete structures for temperature and humidity effects. Stroyizdat, Moskow, Russian. Al-Sanea, S.A., Zedan, M.F., Al-Hussain, S.N., 2012. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, Elsevier Ltd, 89, 430-442. Arvind, R. 2016. Investigation of cracks in buildings. "Forensic Structural En-gineering" a National conference in VIT Chennai, campus, 1. Aste, N., Leonforte, F., Manfren. M., Mazzon M., 2015. Thermal inertia and energy efficiency – parametric simulation assessment on a calibrated case study. Appl Energy, 145, 111-123, DOI: 10.1016/j.apenergy.2015.01.084 Boley, B., Weiner, J., 2013. Theory of Thermal Stresses. Dover Publications, Incorporated, New York Barashkov, V.N., Smolina, I.Yu., Puteeva L.E., Pestsov, D.N., 2012. Founda-tions of the theory of elasticity. Publishing house of TGASU, Tomsk, Russian. Basok, B., Davydenko, B., Goncharuk, S., 2013. Different variants of ther-morenovation of enclosing constructions of floor part in the existing of-fice building and monitoring of heat losses during its protracted exploita-tion. Science and Innovations, 9(2), 18-21, Ukrainian, DOI: 10.15407/scin9.02.018 Basok, B., Davydenko, B., Timoshchenko, A., Goncharuk, S., 2016. Temper-ature and humidity conditions of wall construction with layer of insula-tion in the winter period. Industrial Heat Engineering, 38(6), 38-46, Ukrainian, DOI: 10.31472/ihe.6.2016.06 Costanzo, G., Iacovella, S., Ruelens, F., Leurs, T., Claessens, B., 2016. Ex-perimental analysis of data-driven control for a building heating system. Sustainable Energy, Grids and Networks, Elsevier, 6, 81–90, arXiv: 1507.03638 Harkouss, F., Fardoun, F., Biwole, P.H., 2018. Passive design optimization of low energy buildings in different climates. Energy, Elsevier, 165(PA), 591-613, DOI: 10.1016/j.energy.2018.09.019 Hemsath, T.L, Bandhosseini, K.A., 2015. Sensitivity analysis evaluating basic building geometry's effect on energy use. Renewable Energy, 76, 526-38, DOI: 10.1016/ j.renene.2014.11.044 Isachenko, V.P., Osipova, V.A., Sukomel, A.S., 1975. Heat transfer, Energiya Moscow, Russian Kalema, T., Johannesson, G., Pylsy, P., Hagengran, P., 2008. Accuracy of energy analysis of buildings: a comparison of a monthly energy balance method and simulation methods in calculating the energy consumption and the effect of thermal mass. Journal of Building Physics, 32, 101-130, DOI: 10.1177/1744259108093920 Kamal, M.A., 2020. Technological interventions in building facade system: energy efficiency and environmental sustainability, Architecture re-search, 10(2), 45-53, DOI: 10.5923/j.arch.20201002.01Kovalenko, A.D., 1970. Fundamentals of thermoelasticity. Naukova Dumka, Kiev, Ukraine Krichevskii, A.P., 1984. Calculation of reinforced concrete engineering struc-tures for temperature effects, Stroyizdat, Moscow Kossecka, E., Kosny, J., 2002. Influence of insulation configuration on heat-ing and cooling loads in a continuously used building. 2002, Energy and buildings, 34, 321-331, DOI:10.1016/S0378-7788(01)00121-9 Kylili, A., Fokaides, P.A., 2015. Numerical simulation of phase change ma-terials for building applications: A review. Advances in building energy research, 11, 1-25, DOI: 10.1080/17512549.2015.1116465 Kontoleon, K.J., Eumorfopoulou, E.A., 2008. The influence of wall orienta-tion and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Renewable Energy, 33, 1652-1664, DOI: 10.1016/j.renene.2007.09.008 Lechner, N., 2014. Heating, Cooling, Lighting: Sustainable Design Methods for Architects. John, Wiley & Sons, New York, United States Paruta, V., 2012. Theoretical premises for optimizing the formulation and technological parameters of plaster mortars for walls made of aerated concrete blocks. Civil Engineering Journal, 30-36, DOI: 10.5862/MCE.34.4 Reynders, G.T., 2013. Potential of structural thermal mass for demand-side management in dwellings. Building and environment, Elsevier Science, 64, 187-199, DOI: 10. 1016/j.buildenv.2013.03.010 Snegirev, A.I., Alkhimenko, A.I., 2008. Influence of the short circuit temper-ature during erection on stresses in load-bearing structures, Engineering and construction journal, Russian, 2, 8-16, https://engstroy.spb-stu.ru/userfiles/files/2008/1(2)/01.pdf Tariku, F., Kumaran, K., Fazio, P., 2010. Integrated analysis of whole build-ing heat, air and moisture transfer. International Journal of Heat and Mass Transfer, 53(15-16), 3111-3120, DOI: 10.1016/j.ijheatmasstrans-fer.2010.03.016 Umnyakova, N.P., 2013. Durability of three-layer walls with brick cladding with a high level of thermal protection. Vestnik MGSU, Russian, 94-100. Viot, H., Sempey, A., Pauly, M., Mora, L., 2015. Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Building and environment, Elsevier Science, 93, 339-348, DOI 10.1016/j.buildenv.2015.07.017 Zhang, Z.L., Wachenfeldt, B.J., 2009. Numerical study on the heat storing capacity of concrete walls with air cavities. Energy and Buildings, Else-vier, 41, 769-773, DOI: 10.1016/j.enbuild.2009.02.012