Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114590] Artykuł:

Neural networks in diagnostics of concrete airfield pavements

Czasopismo: Roads and Bridges - Drogi i Mosty   Tom: 21, Strony: 81-97
ISSN:  1643-1618
Opublikowano: 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Małgorzata Linek orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport5070.0049.50  
Piotr Nita orcid logo Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport50.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

airfield pavements  artificial neural networks  concrete pavement diagnostics  concrete pavements  pavement evenness. 



Abstract:

Concrete airfield pavement maintenance encompasses many complex problems, which are difficult to identify using traditional diagnostic methods. Artificial neural networks may prove useful in understanding and solving of such problems. The article presents the nature of neural networks and the possible fields of their application in analysis of processes occurring in airfield surface layers and base layers during service. The presented concepts include the use of neural networks in repair prediction, identification of causes of the observed phenomena and diagnostic predictions for future maintenance and service. The aim of the work is to apply artificial neural networks to modeling of maintenance processes, including prediction of pavement evenness. A neural network model was prepared for assessment of pavement evenness based on data obtained from real pavement sections. Research methodology and the obtained field results were described. The structure of the neural network was designed and verified. Conclusions were formulated regarding suitability of neural modeling for pavement evenness prediction. The proposed methodology may complement the methods currently used in pavement diagnostics.