Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[114220] Artykuł:

Numerical Heat Transfer and Fluid Flow: A Review of Contributions to the Special Issue

(Numeryczna wymiana ciepła i przepływ płynu)
Czasopismo: Energies   Tom: 15, Zeszyt: 2922, Strony: 1-8
ISSN:  1996-1073
Opublikowano: Kwiecień 2022
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Artur Bartosik orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Inżynieria mechaniczna100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

Numeryczna wymiana ciepła  przepływ płynu 


Keywords:

Numerical heat transfer  fluid flow 



Abstract:

The paper contains a summary of successful invited papers addressed to the Special Issue on ‘Numerical Heat Transfer and Fluid Flow’, which were published in 2021 in the scientific journal ‘Energies’. Invitations were addressed to specialists from all over the world who deal with mathematical modeling, simulations, and experiments on heat and/or fluid flow. The submitted papers regarded the solution of problems of scientific and industrial relevance in a specific field of heat transfer and fluid transportation, includ‐ ing natural resources, technical devices, industrial processes, etc. Papers addressed to the Special Issue not only solved specific engineering problems, but served as a catalyst on future directions and priorities in numerical heat transfer and fluid flow. Most papers dealt with heat transfer in single‐phase flow of air, in particular technical devices, while part of them regarded liquid and solid–liquid flows. Reliable predictions require reliable measurements; therefore, the majority of the papers presented experimental data and val‐ idation of mathematical models.



B   I   B   L   I   O   G   R   A   F   I   A
1. Patankar, S.V. Numerical Heat Transfer and Fluid Flow
Minkowych, W.J.m Sparrow, E.M., Eds.
Taylor and Frances Inc.: Wash‐ ington, DC, USA, 1980
p. 2014.
2. Spalding, D.B. Turbulence Models for Heat Transfer
Report No. HTS/78/2
Imperial College of London, Department of Mechanical Engineering: London, UK, 1978.
3. Spalding, D.B. Turbulence Models—A Lecture Course
Report No. HTS/82/4
Imperial College of London, Department of Mechan‐ ical Engineering: London, UK, 1983.
4. Fathinia, F.
Parsazadeh, M.
Heshmati, A. Turbulent forced convection flow in a channel over periodic grooves using nanoflu‐ ids. Int. J. Mech. Mechatron. Eng. 2012, 6, 12–2782. https://doi.org/10.5281/zenodo.1077391.
5. Faruk, O.C.
Celik, N. Numerical investigation of the effect of flow and heat transfer of a semi‐cylindrical obstacle located in a channel. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2013, 7, 891–896.
6. Sen, D.
Ghosh, R.A. Computational study of very high turbulent flow and heat transfer characteristics in circular duct with hemispherical inline baffles. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2015, 9, 1046–1051.
7. Zong, Y.
Bai, D.
Zhou, M.
Zhao, L. Numerical studies on heat transfer enhancement by hollow‐cross disk for cracking coils. Chem. Eng. Process. Process Intensif. 2019, 135, 82–92. https://doi.org/10.1016/j.cep.2018.11.007.
8. Nakhchi, M.E.
Esfahani, J.A. Numerical investigation of heat transfer enhancement inside heat exchanger tubes fitted with perforated hollow cylinders. Int. J. Therm. Sci. 2020, 147, 106153. https://doi.org/10.1016/j.ijthermalsci.2019.106153.
9. Pandey, L.
Singh, S. Numerical Analysis for Heat Transfer Augmentation in a Circular Tube Heat Exchanger Using a Triangular Perforated Y‐Shaped Insert. Fluids 2021, 6, 247. https://doi.org/10.3390/fluids6070247.
10. Bartosik, A. Numerical Modelling of Fully Developed Pulsating Flow with Heat Transfer. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 1989.
11. Hagiwara, Y. Effects of bubbles, droplets or particles on heat transfer in turbulent channel flows. Flow Turbul. Combust. 2011, 86, 343–367.
12. Bayat, H.
Majidi, M.
Bolhasan, M.
Karbalaie Alilou, A.
Mirabdolah, A.
Lavasani, A. Unsteady flow and heat transfer of nanofluid from circular tube in cross‐flow. Int. Sch. Sci. Res. Innov. 2015, 9, 2078–2083.
13. Hamed, H.
Mohhamed, A.
Khalefa, R.
Habeeb, O. The effect of using compound techniques (passive and active) on the double pipe heat exchanger performance. Egypt. J. Chem. 2021, 64, 2797–2802. https://doi.org/10.21608/EJCHEM.2021.54450.3134.
14. Yusefi, A.
Nejat, A.
Sabour, H. Ribbed Channel Heat Transfer Enhancement of an Internally Cooled Turbine Vane Using Cool‐
ing Conjugate Heat Transfer Simulation. Therm. Sci. Eng. Prog. 2020, 19, 100641. https://doi.org/10.1016/j.tsep.2020.100641.
15. Ahn, K.
Song, J.C.
Lee, J.S. Dependence of Conjugate Heat Transfer in Ribbed Channel on Thermal Conductivity of Channel
Wall: An LES Study. Energies 2021, 14, 5698. https://doi.org/10.3390/en14185698.
16. Tian, E.
He, Y.L.
Tao, W.Q. Research on a new type waste heat recovery gravity heat pipe exchanger. Appl. Energy 2017, 188,
586–594. https://doi.org/10.1016/j.apenergy.2016.12.029.
17. Gorecki, G.
Łecki, M.
Gutkowski, A.N.
Andrzejewski, D.
Warwas, B.
Kowalczyk, M.
Romaniak, A. Experimental and Nu‐
merical Study of Heat Pipe Heat Exchanger with Individually Finned Heat Pipes. Energies 2021, 14, 5317.
https://doi.org/10.3390/en14175317.
18. Banaszkiewicz, T.
Chorowski, M.
Gizicki, W.
Jedrusyna, A.
Kielar, J.
Malecha, Z.
Piotrowska, A.
Polinski, J.
Rogala, Z.
Sierpowski,
K. Liquefied Natural Gas in Mobile Applications—Opportunities. Energies 2020, 13, 5673. https://doi.org/10.3390/en13215673.
19. Osorio‐Tejada, J.
Llera‐Sastresa, E.
Scarpellini, S. Liquefied natural gas: Could it be a reliable option for road freight transport
in the EU? Renew. Sustain. Energy Rev. 2017, 71, 785–795. https://doi.org/10.1016/j.rser.2016.12.104.
20. Staffell, I.
Scamman, D.
Abad, A.V.
Balcombe, P.
Dodds, P.E.
Ekins, P.
Shah, N.
Ward, K.R. The role of hydrogen and fuel
cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. https://doi.org/10.1039/C8EE01157E.
21. Avramenko, A.A.
Shevchuk, I.V.
Kovetskaya, Y.Y.
Dmitrenko, N.P. An Integral Method for Natural Convection of Van Der
Waals Gases over a Vertical Plate. Energies 2021, 14, 4537. https://doi.org/10.3390/en14154537.
Energies 2022, 15, 2922 8 of 8
22. Gregory, J.
Tomac, M.A. Review of fluidic oscillator development and application for flow control. AIAA Pap. 2013, 2013–2474. https://doi.org/10.2514/6.2013‐2474.
23. Kim, N.H.
Kim, K.Y. Effects of Bent Outlet on Characteristics of a Fluidic Oscillator with and without External Flow. Energies 2021, 14, 4342. https://doi.org/10.3390/en14144342.
24. Thulukkanam, K. Heat Exchanger Design Handbook, 2nd ed.
CRC Press: Boca Raton, FL, USA, 2013.
25. Marcinkowski, M.
Taler, D.
Taler, J.
Weglarz, K. Thermal Calculations of Four‐Row Plate‐Fin and Tube Heat Exchanger Tak‐ ing into Account Different Air‐Side Correlations on Individual Rows of Tubes for Low Reynold Numbers. Energies 2021, 14,
6978. https://doi.org/10.3390/en14216978.
26. Liang, D.
Jin, D.
Gui, X. Investigation of seal cavity leakage flow effect on multistage axial compressor aerodynamic perfor‐
mance with a circumferentially averaged method. Appl. Sci. 2021, 11, 3937. https://doi.org/10.3390/app11093937.
27. Joachimiak, D. Novel Method of the Seal Aerodynamic Design to Reduce Leakage by Matching the Seal Geometry to Flow
Conditions. Energies 2021, 14, 7880. https://doi.org/10.3390/en14237880.
28. Huda, M.
Koji, T.
Aziz, M. Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources
in Indonesia Power System. Energies 2020, 13, 1162. https://doi.org/10.3390/en13051162.
29. Widyantara, R.D.
Naufal, M.A.
Sambegoro, P.L.
Nurprasetio, I.P.
Triawan, F.
Djamari, D.W.
Nandiyanto, A.B.D.
Budiman,
B.A.
Aziz, M. Low‐Cost Air‐Cooling System Optimization on Battery Pack of Electric Vehicle. Energies 2021, 14, 7954.
https://doi.org/10.3390/en14237954.
30. He, Y.L.
Zhang, Y.W. Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators. Adv. Heat
Transf. 2012, 44, 119–185. https://doi.org/10.1016/B978‐0‐12‐396529‐5.00002‐0.
31. Zhao, J.
Zhang, B.
Fu, X.
Yan, S. Numerical Study on the Influence of Vortex Generator Arrangement on Heat Transfer En‐
hancement of Oil‐Cooled Motor. Energies 2021, 14, 6870. https://doi.org/10.3390/en14216870.
32. Soares, A.K.
Covas, D.I.
Reis, L.F. Analysis of PVC Pipe‐Wall Viscoelasticity during Water Hammer. J. Hydraul. Eng. 2008, 134,
1389–1394.
33. Kubrak, M.
Malesinska, A.
Kodura, A.
Urbanowicz, K.
Stosiak, M. Hydraulic Transients in Viscoelastic Pipeline System with
Sudden Cross‐Section Changes. Energies 2021, 14, 4071. https://doi.org/10.3390/en14144071.
34. Xiong, S.
Wilfong, G.
Lumkes, J.J. Components Sizing and Performance Analysis of Hydro‐Mechanical Power Split Transmis‐
sion Applied to a Wheel Loader. Energies 2019, 12, 1613. https://doi.org/10.3390/en12091613.
35. Bury, P.
Stosiak, M.
Urbanowicz, K.
Kodura, A.
Kubrak, M.
Malesinska, A. A Case Study of Open‐ and Closed‐Loop Control of
Hydrostatic Transmission with Proportional Valve Start‐Up Process. Energies 2021, 14, 1860. https://doi.org/10.3390/en15051860.
36. Warbhe, S.D.
Tripathi, J.J.
Deshmukh, K.C.
Verma, J. Fractional Heat Conduction in a Thin Circular Plate with Constant Tem‐ perature Distribution and Associated Thermal Stresses. J. Heat Transf. 2017, 139, 44502. https://doi.org/10.1115/1.4035442.
37. Blasiak, S. Heat Transfer Analysis for Non‐Contacting Mechanical Face Seals Using the Variable‐Order Derivative Approach.
Energies 2021, 14, 5512. https://doi.org/10.3390/en14175512.
38. Wylie, E.B.
Streeter, V.L.
Suo, L. Fluid Transients in Systems
Prentice Hall: Englewood Cliffs, NJ, USA, 1993.
39. Urbanowicz, K.
Bergant, A.
Kodura, A.
Kubrak, M.
Malesinska, A.
Bury, P.
Stosiak, M. Modeling Transient Pipe Flow in
Plastic Pipes with Modified Discrete Bubble Cavitation Model. Energies 2021, 14, 6756. https://doi.org/10.3390/en14206756.
40. Wilson, K.
Thomas, A. A new analysis of the turbulent flow of non‐Newtonian fluids. Can. J. Chem. Eng. 1985, 63, 539–546.
https://doi.org/10.1002/cjce.5450630403.
41. Bartosik, A. Numerical Modelling of Heat Transfer in Fine Dispersive Slurry Flow. Energies 2021, 14, 4909.
https://doi.org/10.3390/en14164909.