Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The increase in population and the growing demand for food that accompanies it drive the need to achieve sustainable agriculture. Technological progress and methodological novelties provide tools that may support the processes of improving the spatial structure of agricultural lands, as well as their management. One of the examples may be the application of photogrammetric and remote-sensing products to facilitate land consolidation. In the following paper, the systematised procedure of conduct is investigated to determine the moments at which these products could be adopted. In identifying the possibilities for implementing the abovementioned tools, we analyse the legal regulations governing the process and the literature on the subject, as well as some practical examples encountered in surveying practice. In addition, the usefulness of such geospatial products is tested on data gathered during an exemplary UAV flight. We then investigate the issues with implementing the abovementioned tools and assess their advantages and disadvantages in smart agriculture. The research proves that reliable elaboration of the consolidation project concept is critical for its correct realisation, while modern measurement methods providing efficient, up-to-date, factual data facilitate the procedures and support rational decision making. Moreover, they enable us to ensure the necessary accuracy of the data for the scope of the land use and avoid analysing a compilation of several cartographic materials concerning the surveyed object. In the present study, the RMSExyz mean square error at the control points for the orthomosaic, generated using the Matrice 210 RTK v2 professional flying platform, is 5.6 cm, while for the orthomosaic created from images from the amateur drone Mavic 2 Pro RMSExyz, it is 9.2 cm. The results obtained also indicate the usefulness of low-budget drones during the land consolidation process.
B I B L I O G R A F I AAtzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
Balawejder, M.
Matkowska, K.
Rymarczyk, E. Effects of land consolidation in Southern Poland. Acta Sci. Pol. Admin. Locorum 2021, 20, 269–282. [Google Scholar] [CrossRef]
European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives. Communication COM 380. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a3c806a6-9ab3-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 6 December 2020).
Radočaj, D.
Obhođaš, J.
Jurišić, M.
Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
MRiRW. Rolnictwo i Gospodarka Żywnościowa w Polsce (Agriculture and Food Economy in Poland)
Collective work edited by the Institute of Agricultural and Food Economics
Ministerstwo Rolnictwa i Rozwoju Wsi. Praca Zbiorowa Pod Redakcją Instytutu Ekonomiki Rolnictwa i Gospodarki Żywnościowej
Ministry of Agriculture and Rural Development: Warsaw, Poland, 2019.
Janus, J.
Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
Serra, P.
Saurí, D.
Salvati, L. Peri-urban agriculture in Barcelona: Outlining landscape dynamics vis à vis socio-environmental functions. Landsc. Res. 2017, 43, 613–631. [Google Scholar] [CrossRef]
Stańczuk-Gałwiaczek, M. Assessment of the spatial effects of land-consolidation works carried out in Poland in the years 2007–2013. Geomat. Environ. Eng. 2017, 11, 107. [Google Scholar] [CrossRef]
Feltynowski, M.
Kronenberg, J. Urban Green Spaces—An Underestimated Resource in Third-Tier Towns in Poland. Land 2020, 9, 453. [Google Scholar] [CrossRef]
Shakhatreh, H.
Sawalmeh, A.H.
Al-Fuqaha, A.
Dou, Z.
Almaita, E.
Khalil, I.
Othman, N.S.
Khreishah, A.
Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
Wójcik-Leń, J.
Leń, P.
Sobolewska-Mikulska, K. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2018, 152, 333–339. [Google Scholar] [CrossRef]
Leń, P. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Comput. Electron. Agric. 2018, 144, 216–221. [Google Scholar] [CrossRef]
Cienciała, A. The issue of the legal and surveying division of agricultural land on selected examples in Poland and on the international stage. Mater. Sci. Conf. GIS Odyssey 2017, 2017, 67–75. [Google Scholar]
Vitikainen, A. An Overview of Land Consolidation in Europe. Nord. J. Surv. Real Estate Res. 2014, 1. [Google Scholar]
Sobolewska-Mikulska, K. Ocena Polityki Scaleniowej Oraz Prezentacja Dobrych Praktyk (The Assessment of Land Con-Solidation Policy and Presentation of Good Practices)
Politechnika Warszawska: Warsaw, Poland, 2014. [Google Scholar]
Zhang, Z.
Zhao, W. A Parametric Approach to Assess the Sustainability of Land Consolidation: A Case Study in Shandong Province, North China. Agroecol. Sustain. Food Syst. 2013, 37, 444–464. [Google Scholar] [CrossRef]
Noga, K.
Sosnowski, Z.
Balawejder, M.
Matkowska, K.
Mazur, A.
Buczek, J. Ocena Przeprowadzonych Scaleń i Wymiany Gruntów Rolnych Województwa Podkarpackiego Pod Kątem Barier Ograniczających ich Realizację (Assessment of Conducted Land Consolidation Works of Agricultural Land in Podkarpackie Voivodeship in Terms of Barriers Restricting Their Implementation)
Wyższa Szkoła Inżynieryjno-Ekonomiczna w Rzeszowie, Europejski Fundusz Rozwoju Wsi Polskiej—Counterpart Fund: Rzeszów, Poland, 2018
p. 132. [Google Scholar]
Basista, I.
Balawejder, M. Assessment of selected land consolidation in south-eastern Poland. Land Use Policy 2020, 99, 105033. [Google Scholar] [CrossRef]
GUS. Poland in the European Union
Statistics Poland, Statistical Products Department: Warsaw, Poland, 2020.
GUS. Rocznik statystyczny Rolnictwa (Statistical Yearbook of Agriculture)
Główny Urząd Statystyczny (Statistics Poland): Warsaw, Poland, 2019.
Triantafyllou, A.
Sarigiannidis, P.
Bibi, S. Precision Agriculture: A Remote Sensing Monitoring System Architecture. Information 2019, 10, 348. [Google Scholar] [CrossRef]
Segarra, J.
Buchaillot, M.L.
Araus, J.L.
Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
Ustawa z dnia 26 marca 1982 r. o Scaleniu i wymianie gruntów [Act of 26 March 1982 on land consolidation and exchange of land]. J. Laws 1892, 11, 80. (In Polish)
Jezierski, A. Historia Gospodarcza Polski (The Economic History of Poland)
Wydawnictwo Key: Warsaw, Poland, 2003. [Google Scholar]
Dudzińska, M.
Kocur-Bera, K. Land consolidation as the driving force behind ecological and economic development of rural areas. In Proceedings of the 9th International Conference ‘Environmental Engineering’, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar] [CrossRef]
Thomas, J. Safeguarding real property rights and rational use by conflicting private and public interests—The German approach. Géod. Vestnik 2014, 58, 517–534. [Google Scholar] [CrossRef]
Branković, S.
Parezanović, L.
Simović, D. Land consolidation appraisal of agricultural land in the GIS environment. Géod. vestnik 2015, 59, 320–334. [Google Scholar] [CrossRef]
Malashevskyi, M.
Malashevska, O. Land Consolidation Considering Natural Afforestation. Geomat. Environ. Eng. 2022, 16. [Google Scholar] [CrossRef]
Bielska, A.
Kupidura, A. Kształtowanie Przestrzeni na Obszarach Wiejskich (Spatial Development in Rural Areas)
Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2014. [Google Scholar]
Hendricks, A.
Lisec, A. Land consolidation for large-scale infrastructure projects in Germany. Géod. Vestnik 2014, 58, 46–68. [Google Scholar] [CrossRef]
Pawlikowska, E.
Popek, P.
Bieda, A.
Moteva, M.
Stoeva, A. Analysis of the Legal Methods of Agricultural Land Protection in Central Europe on the Example of Poland and Bulgaria. Real Estate Manag. Valuat. 2017, 25, 58–71. [Google Scholar] [CrossRef]
Davidova, S.
Buckwell, A.
Kopeva, D.
Swinnen, J.F.M.
Mathijs, E. Bulgaria: Economics and Politics of Post-Reform Farm. Structures, Agricultural Privatization, Land Reform and Farm. Restructuring in Central and Eastern Europe
Routledge: London, UK, 1997
pp. 23–62. [Google Scholar]
Moteva, M.
Mondeshka, M.
Stoeva, A.
Yarlovska, N. Contemporary issues of land use and water management for agriculture in Bulgaria. Agronomy 2014, 57, 59–68. [Google Scholar]
Noga, K.
Balawejder, M.
Matkowska, K. Dimensions of destruction of road network providing access to cadastral parcels resulting from motorway construction. Geomat. Environ. Eng. 2017, 11, 65–81. [Google Scholar] [CrossRef]
Kocur-Bera, K. Understanding information about agricultural land. An evaluation of the extent of data modification in the Land Parcel Identification System for the needs of area-based payments—A case study. Land Use Policy 2020, 94, 104527. [Google Scholar] [CrossRef]
Cienciała, A.
Sobolewska-Mikulska, K.
Sobura, S. Credibility of the cadastral data on land use and the methodology for their verification and update. Land Use Policy 2021, 102, 105204. [Google Scholar] [CrossRef]
Karabin, M.
Bakuła, K.
Łuczyński, R. Verification of the Geometrical Representation of Buildings in Cadastre Using UAV Photogrammetry. Geomat. Environ. Eng. 2021, 15, 81–99. [Google Scholar] [CrossRef]
Puniach, E.
Bieda, A.
Ćwiąkała, P.
Kwartnik-Pruc, A.
Parzych, P. Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subjectto Landslides. ISPRS Int. J. Geo-Inform. 2018, 7, 331. [Google Scholar] [CrossRef]
Sobura, S. Calibration of non-metric UAV camera using different test fields. Geodesy Cartogr. 2021, 47, 111–117. [Google Scholar] [CrossRef]
Krupowicz, W.
Czarnecka, A.
Grus, M. Implementing crowdsourcing initiatives in land consolidation procedures in Poland. Land Use Policy 2020, 99, 105015. [Google Scholar] [CrossRef]
Tsouros, D.C.
Bibi, S.
Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
Honkavaara, E.
Saari, H.
Kaivosoja, J.
Pölönen, I.
Hakala, T.
Litkey, P.
Mäkynen, J.
Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef]
Gracia-Romero, A.
Kefauver, S.C.
Vergara-Díaz, O.
Hamadziripi, E.
Zaman-Allah, M.A.
Thierfelder, C.
Prassana, B.M.
Cairns, J.E.
Araus, J.L. Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: A case of study with maize in Zimbabwe. Sci. Rep. 2020, 10, 16008. [Google Scholar] [CrossRef] [PubMed]
Jełowicki, Ł.
Sosnowicz, K.
Ostrowski, W.
Osińska-Skotak, K.
Bakuła, K. Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery. Remote Sens. 2020, 12, 2618. [Google Scholar] [CrossRef]
Yao, H.
Qin, R.
Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
Candiago, S.
Remondino, F.
De Giglio, M.
Dubbini, M.
Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
Campos-Taberner, M.
García-Haro, F.J.
Martínez, B.
Izquierdo-Verdiguier, E.
Atzberger, C.
Camps-Valls, G.
Gilabert, M.A. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef]
Abdullahi, H.S.
Sheriff, R.E.
Mahieddine, F. Convolution neural network in precision agriculture for plant image recognition and classification. In Proceedings of the 7th International Conference on Innovative Computing Technology (INTECH), Luton, UK, 16–18 August 2017
pp. 1–3. [Google Scholar] [CrossRef]
Houborg, R.
McCabe, M.F. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef]
Raeva, P.L.
Šedina, J.
Dlesk, A. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens. 2018, 52, 192–201. [Google Scholar] [CrossRef]