Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[11380] Artykuł:

Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels

Czasopismo: International Journal of Refrigeration   Tom: 56, Strony: 198-212
ISSN:  0140-7007
Wydawca:  ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
Opublikowano: Sierpień 2015
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Magdalena Piasecka orcid logoWMiBMKatedra Mechaniki**10040.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 40
Klasyfikacja Web of Science: Article


DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

heat transfer  flow boiling  minichannel  enhanced wall  two-phase flow pressure drop 



Abstract:

This paper presents results concerning flow boiling heat transfer in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The refrigerant flowing in the minichannel, Fluorinert FC-72, was heated by a thin foil microstructured on the side in contact with the fluid. Two types of microstructured surfaces were used: one with evenly distributed microcavities and the other with non-uniformly distributed minicavities. Liquid crystal thermography was applied to determine the temperature of the smooth side of the foil. The paper analyses mainly the impact of the microstructured heating surface and orientation of the minichanel on the heat transfer coefficient and two phase pressure drop. This required calculating the local values of heat transfer coefficient and measuring the pressure drop for different positions of the minichannel with enhanced heating wall. Moreover, the effects of selected thermal and flow parameters (mass flux density and inlet pressure), the geometric parameters, and the type of cooling liquid on the nucleate boiling heat transfer is studied. From the measurement results it is evident that applying a microstructured surface caused an increase in the heat transfer coefficient, which was approximately twice as high as that reported for the smooth surface. The highest values of the coefficient were observed for positions 90°, 135° and 0° (the vertical, the inclined and the horizontal minichannels, respectively), while the lowest values of the coefficient were reported for position 180° (the horizontal minichannel) and 45° (the inclined minichannel). The experimental data concerning the two-phase flow pressure drop was compared with the calculation results obtained by applying nine correlations known from the literature. It is reported that most of the correlations can be used to predict the two-phase flow pressure drop gradient within an acceptable error limit (±30%) only for positions 90° and 135° (the vertical and inclined minichannels, respectively). The lowest agreement between the experimental data and the theoretical predictions was reported for the horizontal positions of the minichannel.