Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[110570] Artykuł:

Analysis of the Failure Process of Elements Subjected to Monotonic and Cyclic Loading Using the Wierzbicki–Bai Model

Czasopismo: Materials   Tom: 14, Zeszyt: 6265, Strony: 1-17
ISSN:  1996-1944
Opublikowano: Pażdziernik 2021
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Urszula Janus-Gałkiewicz orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Niespoza "N" jednostkiInżynieria mechaniczna5070.00.00  
Jarosław Gałkiewicz orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Takzaliczony do "N"Inżynieria mechaniczna5070.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

WierzbickiBai model  fatigue  tensile test  stress triaxiality  Lode parameter 



Abstract:

This article presents the results of a simulation in which smooth cylindrical and ring-notched samples were subjected to monotonic and fatigue loads in an ultra-short-life range, made of Inconel 718 super alloy. The samples displayed different behaviors as a result of different geometries that introduced varying levels of stress triaxiality and loading methods. The simulations used the Wierzbicki–Bai model, which took into account the influence of stress tensors and stress-deviator invariants on the behavior of the material. The difference in the behaviors of the smoothed and notched specimens subjected to tensile and fatigue loads were identified and described. The numerical results were qualitatively supported by the results of the experiments presented in the literature.



B   I   B   L   I   O   G   R   A   F   I   A
1. Funari, M.F.
Lonetti, P.
Spadea, S. A crack growth strategy based on moving mesh method and fracture mechanics. Theor. Appl.
Fract. Mech. 2019, 102, 103–115, doi:10.1016/j.tafmec.2019.03.007.
2. Amini, M.R.
Shahani, A.R. Finite element simulation of dynamic crack propagation process using an arbitrary Lagrangian
Eulerian formulation. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 533–547, doi:10.1111/ffe.12023.
3. Xu, D.
Liu, Z.
Liu, X.
Zeng, Q.
Zhuang, Z. Modeling of dynamic crack branching by enhanced extended finite element method.
Comput. Mech. 2014, 54, 489–502, doi:10.1007/s00466‐014‐1001‐9.
4. Bai, Y.
Wierzbicki, T. Application of extended Mohr‐Coulomb criterion to ductile fracture. Int. J. Fract. 2010, 161, 1–20, doi:10.1007/s10704‐009‐9422‐8.
5. Khan, A.S.
Liu, H. A new approach for ductile fracture prediction on Al 2024‐T351 alloy. Int. J. Plast. 2012, 35, 1–12,
doi:10.1016/j.ijplas.2012.01.003.
6. Danas, K.
Ponte Castañeda, P. Influence of the Lode parameter and the stress triaxiality on the failure of elasto‐plastic porous
materials. Int. J. Solids Struct. 2012, 49, 1325–1342, doi:10.1016/j.ijsolstr.2012.02.006.
7. Algarni, M.
Bai, Y.
Choi, Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and
ductile fracture. Eng. Fract. Mech. 2015, 147, 140–157, doi:10.1016/j.engfracmech.2015.08.007.
8. Algarni, M.
Choi, Y.
Bai, Y. A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel
718. Int. J. Fatigue 2017, 96, 162–177, doi:10.1016/j.ijfatigue.2016.11.033.
9. Algarni, M.
Bai, Y.
Zwawi, M.
Ghazali, S. Damage evolution due to extremely low‐cycle fatigue for inconel 718 alloy. Metals
2019, 9, 1–18, doi:10.3390/met9101109.
10. Bao, Y.
Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98,
doi:10.1016/j.ijmecsci.2004.02.006.
11. Bao, Y.
Wierzbicki, T. On the cut‐off value of negative triaxiality for fracture. Eng. Fract. Mech. 2005, 72, 1049–1069,
doi:10.1016/j.engfracmech.2004.07.011.
12. Xue, L.
Wierzbicki, T. Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng. Fract. Mech.
2008, 75, 3276–3293, doi:10.1016/j.engfracmech.2007.08.012.
13. Kofiani, K.
Nonn, A.
Wierzbicki, T. New calibration method for high and low triaxiality and validation onSENT specimens of
API X70. Int. J. Press. Vessel. Pip. 2013, 111–112, 187–201, doi:10.1016/j.ijpvp.2013.07.004.
14. Brocks, W.
Kunecke, G. On the Influence of Triaxiality of the Stress State on Ductile Tearing Resistance. In Defect Assessment in
Components—Fundamentals and Applications (ESIS/EGF9)
Blauel, J.G., Schwalbe, K.‐H., Eds.
Mechanical Engineering
Publications Limited: London, UK, 1991.
15. Gao, X.
Zhang, G.
Roe, C. A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech. 2010, 19, 75–94,
doi:10.1177/1056789509101917.
16. Mohr, D.
Marcadet, S.J. Micromechanically‐motivated phenomenological Hosford‐Coulomb model for predicting ductile
fracture initiation at low stress triaxialities. Int. J. Solids Struct. 2015, 67–68, 40–55, doi:10.1016/j.ijsolstr.2015.02.024.
17. Malvern, L.E. Introduction to the Mechanics of a Continuous Medium
Prentice‐Hall, Inc., Englewood Cliffs, New Jersey: 1969.
18. Erice, B.
Gálvez, F. A coupled elastoplastic‐damage constitutive model with Lode angle dependent failure criterion. Int. J. Solids
Struct. 2014, 51, 93–110, doi:10.1016/j.ijsolstr.2013.09.015.
19. Rice, J.R.
Tracey, D.M. On the ductile enlargement of voids in triaxial stress fields*. J. Mech. Phys. Solids 1969, 17, 201–217,
doi:10.1016/0022‐5096(69)90033‐7.
20. McClintock, F.A. A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 1968, 35, 363–371,
doi:https://doi.org/10.1115/1.3601204.
21. Besson, J. Continuum models of ductile fracture: A review. Int. J. Damage Mech. 2010, 19, 3–52, doi:10.1177/1056789509103482.
22. Neimitz, A.
Galkiewicz, J.
Lipiec, S.
Dzioba, I. Estimation of the onset of crack growth in ductile materials. Materials 2018, 11,
2026, doi:10.3390/ma11102026.
23. Barsoum, I.
Faleskog, J. Rupture mechanisms in combined tension and shear‐Experiments. Int. J. Solids Struct. 2007, 44, 1768–
1786, doi:10.1016/j.ijsolstr.2006.09.031.
24. Barsoum, I.
Faleskog, J. Rupture mechanisms in combined tension and shear‐Micromechanics. Int. J. Solids Struct. 2007, 44,
5481–5498, doi:10.1016/j.ijsolstr.2007.01.010.
25. Hamdia, K.M.
Msekh, M.A.
Silani, M.
Thai, T.Q.
Budarapu, P.R.
Rabczuk, T. Assessment of computational fracture models
using Bayesian method. Eng. Fract. Mech. 2019, 205, 387–398, doi:10.1016/j.engfracmech.2018.09.019.
26. Bai, Y.
Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 2008, 24,
1071–1096, doi:10.1016/j.ijplas.2007.09.004.
27. Pereira, F.G.L.
Lourenço, J.M.
Nascimento, R.M. do
Castro, N.A. Fracture Behavior and Fatigue Performance of Inconel 625.
Mater. Res. 2018, 21, doi:10.1590/1980‐5373‐mr‐2017‐1089.
28. Sun, C.
Song, Q. A method for predicting the effects of specimen geometry and loading condition on fatigue strength. Metals
2018, 8, 1–13, doi:10.3390/met8100811.
29. Sharma, A.
Oh, M.C.
Ahn, B. Recent advances in very high cycle fatigue behavior of metals and alloys—A review. Metals 2020,
10, 1–23, doi:10.3390/met10091200.
30. Mahtabi, M.J.
Shamsaei, N.
Rutherford, B. Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An
Experimental Investigation. Procedia Eng. 2015, 133, 646–654, doi:10.1016/j.proeng.2015.12.645.
31. Li, X.
Xiong, S.M.
Guo, Z. Failure behavior of high pressure die casting AZ91D magnesium alloy. Mater. Sci. Eng. A 2016, 672,
216–225, doi:10.1016/j.msea.2016.07.009.