Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108900] Artykuł:

Numerical modelling of heat transfer in fine dispersive slurry flow

(Modelowanie numeryczne wymiany ciepła w drobno-dyspersyjnym przepływie szlamu.)
Czasopismo: Energies   Tom: 14, Zeszyt: 16, Strony: 1-22
ISSN:  1996-1073
Opublikowano: Sierpień 2021
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Artur Bartosik orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Inżynieria mechaniczna100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI     Spis treści    
Keywords:

heat transfer in non-Newtonian slurry  damping of turbulence  Nusselt number for slurry 



Abstract:

Slurry flows commonly appear in the transport of minerals from a mine to the processing site or from the deep ocean to the surface level. The process of heat transfer in solid–liquid flow is espe-cially important for the long pipeline distance. The paper is focused on the numerical modelling and simulation of heat transfer in a fine dispersive slurry, which exhibits yield stress and damp-ing of turbulence. The Bingham rheological model and the apparent viscosity concept were ap-plied. The physical model was formulated and then the mathematical model, which constitutes conservative equations based on the time average approach for mass, momentum, and internal energy. The slurry flow in a pipeline is turbulent and fully developed hydrodynamically and thermally. The closure problem was solved by taking into account the Boussinesque hypothesis and a suitable turbulence model, which includes the influence of the yield shear stress on the wall damping function. The objective of the paper is to develop a new correlation of the Nusselt number for turbulent flow of fine dispersive slurry that exhibits yield stress and damping of turbulence. Simulations were performed for turbulent slurry flow, for solid volume concentrations 10%, 20%, 30%, and for water. The mathematical model for heat transfer of the carrier liquid flow has been validated. The study confirmed that the slurry velocity profiles are substantially different from those of the carrier liquid and have a significant effect on the heat transfer process. The highest rate of decrease in the Nusselt number is for low solid concentrations, while for C > 10% the de-crease in the Nusselt number is gradual. A new correlation for the Nusselt number is proposed, which includes the Reynolds and Prandtl numbers, the dimensionless yield shear stress, and sol-id concentration. The new Nusselt number is in good agreement with the numerical predictions and the highest relative error was obtained for C = 10% and Nu = 44.3 and is equal to −12%. Re-sults of the simulations are discussed. Conclusions and recommendations for further research are formulated.



B   I   B   L   I   O   G   R   A   F   I   A
1. Dai, Y.
Zhang, Y.
Li, X. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining. Ocean. Eng. 2021, 220, 108411, doi:10.1016/j.oceaneng.2020.108411.
2. Wilson, K.C.
Clift, R.
Sellgren, A. Operating points for pipelines carrying concentrated heterogeneous slurries. Powder Tech-nol. 2002, 123, 19–24, doi:10.1016/S0032-5910(01)00423-5.
3. Tomareva, I.A.
Kozlovtseva, E.Y.
Perfilov, V.A. Impact of pipeline construction on air environment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 262, 1–7, doi:10.1088/1757-899X/262/1/012168.
4. Michaels, A.S.
Bolger, J.C. The plastic flow behavior of flocculated Kaolin suspensions. J. Ind. Eng. Chem. Fundam. 1962, 1, 153–162, doi:10.1021/i160003a001.
5. Roco, M.C.
Shook, C.A. Computational methods for coal slurry pipeline with heterogeneous size distribution. Powder Tech-nol. 1984, 39, 159–176, doi:10.1016/0032-5910(84)85034-2.
6. Shook, C.A.
Roco, M.C. Slurry Flow: Principles and Practice
ButterworthHeinemann: Boston, MA, USA, 1991. Available online: https://www.amazon.com/Slurry-Flow-Principles-Butterworth-Heinemann-Engineering/dp/0750691107 (accessed on 7 August 2021).
7. Gillies, R.G.
Schaan, J.
Sumner, R.J.
Mckibben, M.J.
Shook, C.A. Deposition velocities for Newtonian slurries in turbulent flow. Can. J. Chem. Eng. 2000, 78, 704–708, doi:10.1002/cjce.5450780412.
8. Doron, P.
Barnea, D. A three-layer model for solid liquid flow in horizontal pipes. Int. J. Multiph. Flow 1993, 19, 1029–1043, doi:10.1016/0301-9322(93)90076-7.
9. El-Nahhas, K.
El-Hak, N.G.
Rayan, M.A.
El-Sawaf, I. Flow behaviour of non-Newtonian clay slurries. In Proceedings of the Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt, 17–20 March 2005
pp. 627–640. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.772&rep=rep1&type=pdf (accessed on 7 August 2021).
10. Gopaliya, M.K.
Kaushal, D.R. Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD. Part. Sci. Technol. 2015, 33, 369–384, doi:10.1080/02726351.2014.971988.
11. Messa, G.V.
Malavasi, S. Improvements in the numerical prediction of fully developed slurry flow in horizontal pipes. Pow-der Technol. 2015, 270, 358–367, doi:10.1016/j.powtec.2014.10.027.
12. Silva, R.
Garcia, F.A.P.
Faia, P.M.
Rasteiro, M.G. Settling suspensions flow modelling: A Review. KONA Powder Part. J. 2015, 2015, 41–56, doi:10.14356/ kona.2015009.
13. Li, M.Z.
He, Y.P.
Liu, Y.D.
Huang, C. Pressure drop model of high-concentration graded particle transport in pipelines. Ocean Eng. 2018, 163, 630–640, doi:10.1016/j.oceaneng.2018.06.019.
14. Vlasák, P.
Matouek, V.
Chára, Z.
Krupicka, J.
Konfrst, J.
Keseley, M. Solid volume concentration distribution and deposi-tion limit of medium-coarse sand-water slurry in inclined pipe. J. Hydrol. Hydromech. 2020, 68, 83–91, doi:10.2478/johh-2019-0023.
15. Shook, C.
Bartosik, A. Particle-wall stresses in vertical slurry flows. Powder Technol. Elsevier Sci. 1994, 81, 117–124. Avail-able online: https://www.sciencedirect.com/science/article/abs/pii/003259109402877X (accessed on 7 August 2021).
16. Wilson, K.C.
Thomas, A.D. Analytic model of laminar-turbulent transition for Bingham plastics. Can. J. Chem. Eng. 2006, 84, 520–526, doi:10.1002/cjce.5450840502.
17. Kelessidis, V.C.
Dalamarinis, P.
Maglione, R. Experimental study and predictions of pressure losses of fluids modeled as Herschel–Bulkley in concentric and eccentric annuli in laminar, transitional and turbulent flows. J. Pet. Sci. Eng. 2011, 77, 305–312, doi:10.1016/j.petrol.2011.04.004.
18. Talmon, A.M. Analytical model for pipe wall friction of pseudo-homogenous sand slurries. Part. Sci. Technol. Int. J. 2013, 31, 264–270, doi:10.1080/02726351.2012.717588.
19. Cotas, C.
Asendrych, D. Numerical simulation of turbulent pulp flow: Influence of the non-Newtonian properties of the pulp and of the damping function. In Proceedings of the 8th International Conference for Conveying and Handling of Particulate Solids, Tel-Aviv, Israel, 3–7 May 2015
pp. 1–18. Available online: https://www.researchgate.net/publication/283345241 (accessed on 7 August 2021).
20. Cotas, C.
Asendrych, D.
Garcia, F.A.P.
Fala, P.
Rasteiro, M.G. Turbulent flow of concentrated pulp suspensions in a pipe—Numerical study based on a pseudo-homogeneous approach. In Proceedings of the COST Action FP1005 Final Confer-ence, EUROMECH Colloquium 566, Trondheim, Norway, 9–11 June 2015. Available online: https://www.researchgate.net/publication/283342328 (accessed on 7 August 2021).
21. Cotas, C.
Silva, R.
Garcia, F.
Faia, P.
Asendrych, D.
Rasteiro, M.G. Application of different low-Reynolds k-ε turbulence models to model the flow of concentrated pulp suspensions in pipes. Procedia Eng. 2015, 102, 1326–1335, doi:10.1016/j.proeng.2015.01.263.
22. Rawat, A.
Singh, S.N.
Seshadri, V. Computational methodology for determination of head loss in both laminar and turbu-lent regimes for the flow of high concentration coal ash slurries through pipeline. Part. Sci. Technol. 2016, 34, 289–300, doi:10.1080/02726351.2015.1075637.
23. Kumar, N.
Gopaliya, M.K.
Kaushal, D.R. Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Part. Sci. Technol. 2019, 37, 232–250, doi:10.1080/02726351.2017.1364313.
24. Mehta, D.
Radhakrishnan, A.K.T.
Van Lier, J.B.
Clemens, F.H.L.R. Assessment of numerical methods for estimating the wall shear stress in turbulent Herschel–Bulkley slurries in circular pipes. J. Hydraul. Res. 2020, 58, 196–213, doi.org/10.1080/00221686.2020.1744751.
25. Wilson, K.
Thomas, A. A new analysis of the turbulent flow of non-Newtonian fluids. Can. J. Chem. Eng. 1985, 63, 539–546, doi:10.1002/cjce.5450630403.
26. Zisselmar, R.
Molerus, O. Investigation of solid-liquid pipe flow with regard to turbulence modification. Chem. Eng. J. 1979, 18, 233–239, doi:10.1016/0300-9467(79)80045-3.
27. Hetsroni, G. Particles-turbulence interaction. Int. J. Multiph. Flow 1989, 15, 735–746, doi:10.1016/0301-9322(89)90037-2.
28. Gore, R.A.
Crowe, C.T. Modulation of turbulence by dispersed phase. J. Fluids Eng. 1991, 113, 304–307, doi:10.1115/1.2909497.
29. Jianren, F.
Junmei, S.
Youqu, Z.
Kefa, C. The effect of particles on fluid turbulence in a turbulent boundary layer over a cylin-der. Acta Mech. Sin. 1997, 13, 36–43. Available online: https://link.springer.com/article/10.1007/BF02487829 (accessed on 7 August 2021).
30. Eaton, J.K.
Paris, A.D.
Burton, T.M. Local distortion of turbulence by dispersed particles. AIAA 2012, AIAA-99–3643, doi:10.2514/6.1999-3643.
31. Fessler, J.R.
Eaton, J.K. Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech. 1999, 394, 97–117. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.8674&rep=rep1&type=pdf (accessed on 7 August 2021).
32. Li, D.
Luo, K.
Fan, J. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 2016, 802, 359–394, doi:10.1017/jfm.2016.406.
33. Li, D.
Luo, K.
Wang, Z.
Xiao, W.
Fan, J. Drag enhancement and turbulence attenuation by small solid particles in an unsta-bly stratified turbulent boundary layer. Phys. Fluids 2019, 31, 1–19, doi:10.1063/1.5094103.
34. Sumner, R.J. Concentration Variations and Their Effects on in Flowing Slurries and Emulsions. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 1992.
35. Xu, J.
Gillies, R.
Small, M.
Shook, C.A. Laminar and turbulent flow of Kaolin slurries. In Proceedings of the Hydrotransport 12, BHR Group, Cranfield, UK, 28–30 September 1993
pp. 595–613. Available online: https://www.src.sk.ca/sites/default/files/resources/pipe%2520flow%2520technology%2520papers%25201991-2007.pdf (accessed on 7 August 2021).
36. Fathinia, F.
Parsazadeh, M.
Heshmati, A. Turbulent forced convection flow in a channel over periodic grooves using nanofluids. Int. J. Mech. Mechatron. Eng. 2012, 6, 12, 2782–2787, doi:10.5281/zenodo.1077391.
37. Faruk, O.C.
Celik, N. Numerical investigation of the effect of fow and heat transfer of a semi-cylindrical obstacle located in a channel. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2013, 7, 891–896. Available online: https//www.researchgate.net/publication/285116236 (accessed on 7 August 2021).
38. Sen, D.
Ghosh, R. A Computational study of very high turbulent flow and heat transfer characteristics in circular duct with hemispherical inline baffles. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2015, 9, 1046–1051. Available online: https://www.researchgate.net/publication/312134104 (accessed on 7 August 2021).
39. Zong, Y.
Bai, D.
Zhou, M.
Zhao, L. Numerical studies on heat transfer enhancement by hollow-cross disk for cracking coils. Chem. Eng. Process. Process. Intensif. 2019, 135, 82–92, doi:10.1016/j.cep.2018.11.007.
40. Nakhchi, M.E.
Esfahani, J.A. Numerical investigation of heat transfer enhancement inside heat exchanger tubes fitted with perforated hollow cylinders. Int. J. Therm. Sci. 2020, 147, 106153, doi:10.1016/j.ijthermalsci.2019.106153.
41. Pandey, L.
Singh, S. Numerical Analysis for Heat Transfer Augmentation in a Circular Tube Heat Exchanger Using a Tri-angular Perforated Y-Shaped Insert. Fluids 2021, 6, 247, doi:10.3390/fluids6070247.
42. Bartosik, A. Numerical Modelling of Fully Developed Pulsating Flow with Heat Transfer. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 1989.
43. Hagiwara, Y. Effects of bubbles, droplets or particles on heat transfer in turbulent channel flows. Flow Turbul. Combust. 2011, 86, 343–367, doi:10.1007/s10494-010-9296-x.
44. Bayat, H.
Majidi, M.
Bolhasan, M.
Karbalaie Alilou, A.
Mirabdolah, A.
Lavasani, A. Unsteady flow and heat transfer of nanofluid from circular tube in cross-flow. Int. Sch. Sci. Res. Innov. 2015, 9, 2078–2083, doi:10.5281/zenodo.1110289.
45. Hamed, H.
Mohhamed, A.
Khalefa, R.
Habeeb, O. The effect of using compound techniques (passive and active) on the dou-ble pipe heat exchanger performance. Egypt. J. Chem. 2021, 64, 2797–2802, doi:10.21608/ejchem.2021.54450.3134.
46. Harada, E.
Toda, M.
Kuriyama, M.
Konno, H. Heat transfer between wall and solid-water suspension flow in horizontal pipes. J. Chem. Eng. Jpn. 1985, 18, 33–38, doi:10.1252/jcej.18.33.
47. Harada, E.
Kuriyama, M.
Konno, H. Heat transfer with a solid liquid suspension flowing through a horizontal rectangular duct. Heat Transf. Jpn. Res. 1989, 18, 79–94, doi:10.1252/kakoronbunshu.14.195.
48. Wang, X.
Xu, X.
Choi, S.U.S. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 1999, 13, 474–480, doi:10.2514/2.6486.
49. Ku, J.H.
Cho, H.H.
Koo, J.H.
Yoon, S.G.
Lee, J.K. Heat transfer characteristics of liquid-solid suspension flow in a horizon-tal pipe. KSME Int. J. 2000, 14, 1159–1167. Available online: https://link.springer.com/article/10.1007%2FBF03185070 (ac-cessed on 7 August 2021).
50. Amoura, M.
Alloti, M.
Mouassi, A.
Zeraibi, N. Study of heat transfer of nanofluids in a circular tube. Int. J. Phys. Math. Sci. 2013, 7, 1464–1469, doi:10.5281/zenodo.1088042.
51. Bubbico, R.
Celata, G.P.
D’Annibale, F.
Mazzarotta, B.
Menale, C. Comparison of the Heat Transfer Efficiency of Nanoflu-ids. Chem. Eng. Trans. 2015, 43, 703–708, doi:10.3303/CET1543118.
52. Zakaria, I.A.
Mohamed, W.A.
Mamat, A.M.
Rahman, S. Thermal analysis of heat transfer enhancement and fluid flow for low concentration of Al2O3 water-ethylene glycol mixture nanofluid in a single PEMFC cooling plate. Energy Procedia 2015, 79, 259–264, doi:10.1016/j.egypro.2015.11.475.
53. Hamad, F.A.
He, S. Heat transfer from a cylinder in cross-flow of single and multiphase flows. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2017, 11, 370–374. Available online: https://www.researchgate.net/publication/313824654 (accessed on 7 August 2021).
54. Jacimovski, D.
Garic-Grulovic, R.
Grbavcic, Z.
Boškovic-Vragolovic, N. Analogy between momentum and heat transfer in liquid-solid fluidized beds. Powder Technol. 2015, 274, 213–216, doi:10.1016/j.powtec.2014.11.010.
55. Chavda, N.K.
Patel, G.V.
Bhadauria, M.R.
Makwana, M.N. Effect of nanofluid on friction factor of pipe and pipe fittings: Part ii effect of copper oxide nanofluid. Int. J. Res. Eng. Technol. 2015, 4, 697–700. Available online: https://www.slideshare.net/esatjournals/effect-of-nanofluid-on-friction-factor-of-pipe-and-pipe-fittings-part-ii-effect-of-copper-oxide-nanofluid (accessed on 7 August 2021).
56. Rozenblit, R.
Simkhis, M.
Hetsroni, G.
Barnea, D.
Taitel, Y. Heat transfer in horizontal solid-liquid pipe flow. Int. J. Mul-tiph. Flow 2000, 26, 1235–1246, doi:10.1016/S0301-9322(99)00089-0.
57. Bartosik, A. Simulation of heat transfer to Kaolin slurry which exhibits enhanced damping of turbulence. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, FA, USA, 14–16 July 2014
pp. 2318–2325. Available online: http://hdl.handle.net/2263/44670 (accessed on 7 August 2021).
58. Bartosik, A. Simulation of a yield stress influence on Nusselt number in turbulent flow of Kaolin slurry. In Proceedings of the ASME Summer Heat Transfer Conference, Washington, DC, USA, 10–14 July 2016
p. 2, doi:10.1115/HT2016-1080.
59. Ramisetty, K. Prediction of Concentration Profiles of a Particle-Laden Slurry Flow in Horizontal and Vertical Pipes
Jawaharlal Nehru Technological University Hyderabad: Hyderabad, India, 2010
p. 113. Available online: https://shareok.org/bitstream/handle/11244/10042/Ramisetty_okstate_0664M_11139.pdf?sequence=1 (accessed on 7 August 2021).
60. Reynolds, O. On the dynamical theory on incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. 1895, 186, 123–164, doi:10.1098/rsta.1895.0004.
61. Boussinesque, J. Theorie de l’ecoulement tourbillant. Mem. Acad. Sci. 1877, 23, 46.
62. Blom, J. An experimental determination of the turbulent Prandtl number in a developing temperature boundary layer. Eindh. Univ. Technol. 1970, doi:10.6100/IR51512.
63. Launder, B.E.
Sharma, B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spin-ning disc. Lett. Heat Mass Transfer. 1974, 131–138. Available online: https://www.sciencedirect.com/science/article/abs/pii/0094454874901507 (accessed on 7 August 2021).
64. Spalding, D.B. Turbulence Models for Heat Transfer
Report HTS/78/2
Department of Mechanical Engineering, Imperial Col-lege London: London, UK, 1978.
65. Spalding, D.B. Turbulence Models—A Lecture Course
Report HTS/82/4
Department of Mechanical Engineering, Imperial College London: London, UK, 1983.
66. Mathur, S.
He, S. Performance and implementation of the Launder–Sharma low-Reynolds number turbulence model. Com-put. Fluids 2013, 79, 134–139, doi:10.1016/j.compfluid.2013.02.020.
67. Abir, I.A.
Emin, A.M. A comparative study of four low-Reynolds-number k-e turbulence models for periodic fully developed duct flow and heat transfer. Numer. Heat Transf. Part B Fundam. 2016, 69, 234–248, doi:10.1080/10407790.2015.1097141.
68. Hedlund, A. Evaluation of RANS Turbulence Models for the Simulation of Channel Flow
Teknisk-naturvetenskaplig Fakultet UTH-enheten: Upsala, Sweden, 2014
p. 26. Available online: https://www.diva-portal.org/smash/get/diva2:771689/FULLTEXT01.pdf (accessed on 7 August 2021).
69. Davidson, L. An Introduction to Turbulence Models
Chalmers University of Technology: Goteborg, Sweden, 2018.
70. Lawn, C.J. The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech. 1971, 48, 477–505. Available online: http://www.tfd.chalmers.se/~lada/postscript_files/kompendium_turb.pdf (accessed on 7 August 2021).
71. Metzner, A.B.
Reed, J. Flow of non-Newtonian fluids-correlation of the laminar, transition and turbulent flow regions. AIChEJ 1955, 1, 434–440, doi:10.1002/AIC.690010409.
72. Biswas, P.K.
Gidiwalla, K.M.
Sanyal, S.C.D. A simple technique for measurement of apparent viscosity of slurries: Sand-water system. Mater. Des. 2002, 23, 511–519, doi:10.1016/S0261-3069(01)00030-9.
73. Bartosik, A. Simulation and Experiments of Axially-Symmetrical Flow of Fine- and Coarse-Dispersive Slurry in Delivery Pipe-lines
Monograph M-11
Kielce University of Technology: Kielce, Poland, 2009.
74. Roache, P.J. Computational Fluid Dynamics. Hermosa Publ. Albuq. 1982, 206, 332.
75. Hermandes-Peres, V.
Abdulkadir, M.
Azzopardi, B.J. Grid generation issues in the CFD modelling of two-phase flow in a pipe. J. Comput. Multiph. Flows 2011, 3, 13–26, doi:10.1260/1757-482X.3.1.13.
76. Bartosik, A. Application of rheological models in prediction of turbulent slurry flow. Flow Turbul. Combust. 2010, 84, 277–293, doi:10.1007/s10494-009-9234-y.
77. Salamone, J.S.
Newman, M. Water suspensions of solids. Ind. Eng. Chem. 1955, 47, 283–288.
78. Ozbelge, T.A.
Somer, T.G. A heat transfer correlation for liquid-solid flows in horizontal pipes. Chem. Eng. J. 1994, 55, 39–44, doi:10.1016/0923-0467(94)87004-7.
79. Dittus, F.W.
Boelter, L.M.K. Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat Mass Transf. 1985, 12, 3–22, doi:10.1016/0735-1933(85)90003-X.
80. Bergman, T.L.
Lavine, A.S.
Incropera, F.P.
DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 8th ed.
John Willey & Sons: Hoboken, NJ, USA, 2018. Available online: https://www.wiley.com/en-us/ES81119320425 (accessed on 7 August 2021).
81. Sparrow, E.M.
Abraham, J.
Gorman, J. Advances in Heat Transfer
Academic Press: Cambridge, MA, USA
Elsevier Inc.: Amsterdam, The Netherlands, 2017
Volume 49, pp. 1–323. Available online: https://www.elsevier.com/books/advances-in-heat-transfer/sparrow/978-0-12-812411-6 (accessed on 7 August 2021).
82. Slatter, P.T. Transitional and Turbulent Flow on Non-Newtonian Slurries in Pipes. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1994.
83. Prandtl, L. Bemerkung uber den warmeubergang in rohr. Phys. Z. 1928, 29, 487.
84. Cebeci, T.
Smith, A.M.O. Analysis of Turbulent Boundary Layers
Academic Press: Cambridge, MA, USA, 1974. Available online: https://www.amazon.com/Analysis-Turbulent-Boundary-Layers-Tuncer/dp/B009DKC2YK (accessed on 7 August 2021).
85. Hashizume, K.
Kimura, Y.
Morita, S. Analogy between pressure drop and heat transfer in liquid-solid circulating fluidized beds. Trans. Jpn. Soc. Mech. Eng. 2008, 74, 2014–2019, doi:10.1299/kikaib.74.2014.
86. Etheram, H.
Arani, A.A.
Sheikhzadeh, G.A.
Aghaei, A.
Malihi, A.R. The effect of various conductivity and viscosity models considering Brownian motion on nanofluids mixed convection flow and heat transfer. Trans. Phenom. Nano Micro Scales 2016, 4, 78–81, doi:10.7508/tpnms.2016.01.003.