Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108500] Artykuł:

Influence of Solids Concentration on Solid-Liquid Transportation in a Lime Production Plant

(Wpływ koncentracji fazy stałej na transport hydromieszaniny w przedsiębiorstwie produkcji wapna)
Czasopismo: WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS   Tom: 16
ISSN:  1991-8747
Opublikowano: Czerwiec 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Beata Jaworska-Jóźwiak orcid logo WZiMKKatedra Inżynierii ProdukcjiTakzaliczony do "N"Inżynieria mechaniczna10040.0040.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 40


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Fine-dispersive lime slurry  slurry rheology  two-phase flow  lime production process 



Abstract:

The main objective of the research is examining the influence of solids concentration on the shear stress and viscosity in fine-dispersive lime slurry collected from a flow installation existing in a selected processing plant producing lime. The analysis presented in the paper deals with slurry of average-size particles the diameter of which equals to 46μm, solid density ranges from 1140 kg/m3 to 1330 kg/m3 and solids concentration by volume from 10.12% to 23.70%. It has been shown that for solids concentration up to 18.28% by volume, the shear stress increases moderately with increasing concentration. If solids concentration is higher than 18.28% by volume, the shear stress increases exponentially. The determination of the boundary concentration above which the increase in shear stress is exponential is a fundamental guideline in determining the transport parameters of fine-dispersive lime slurry. The expected results of the analysis should be recommended for the transport of slurry with several times higher mass concentration and thus reducing the amount of water while increasing the economic profitability of the applied solution.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Beltrán-Prieto J. C., KolomaznĂk K., Determination of Amount of Theoretical Zones and Feed Location in Multicomponent Distillation, WSEAS Transactions on Applied
and Theoretical Mechanics, Vol. 14, 2019, No. 22, pp. 198-204.
[2] Ćerny V., Drochytka R., The Influence of Different Types of Siliceous Raw Materials on Tobermorite Formation in Lime-Silica Composite, WSEAS Transactions on Environment and Development, Vol. 15, 2019, pp. 57-64.
[3] Charles M. E. and Charles R. A., Advances in solid-liquid flow in pipes and its applications, Pergamon Press, New York, 1971.
[4] Shook C. A. and Roco M., Slurry Flow: Principles and Practice, Boston: ButterworthHeinemann, 1991.
[5] Bartosik A., Simulation and experimental studies of axially-symmetrical flow of fine- and coarse-dispersive slurry in delivery pipelines, Ed. Kielce University of Technology, 2009.
[6] Chhabra R. and Richardson J., Non-Newtonian flow in the process industries, ButterworthHeinemann, Oxford, 1999.
[7] Ghosh T. and Shook C. A., 1990, Freight pipelines, ed. H. Liu and G. F. Round, Hemisphere, New York, 1990.
[8] Kembłowski Z., Non-Newtonian fluid rheometry, Scientific and Technical Publishing, Warsaw, 1973.
[9] Senapati P. K., Panda D. and Parida A., Predicting viscosity of limestone-water slurry, Journal of Minerals & Materials Characterization & Engineering, Vol. 8, No. 3,
2009, pp. 203-221.
[10] Bartosik A., Simulation of turbulent flow of fine dispersive slurry, Chemical Process Engineering, Vol. 31, 2010, pp. 67-80.
[11] He M., Wang Y. and Forssberg E., Slurry rheology in wet ultra-fine grinding of industrial minerals: a review, Powder Technology, Vol. 147, 2004, pp. 94-112.
[12] Ohlan R., Gopaliya M. K. and Kaushal D. R., Simulation of sand-water slurry flows through pipeline, Multiphase Science and Technology, Vol. 30, No. 1, 2018, pp. 293-318.
[13] Dziubiński M., Kiljański T. and Sęk J., Theoretical foundations and rheology measurements methods, Ed. Lodz University of Technology, 2014.
[14] Heywood N., Flow curve measurements for process engineering design applications, 7th Southern African Society of Rheology Conference Paper, Stellenbosch, 2018.
[15] Senapati S., Pothal J. K., Some studies on rheological and pipeline transportation of concentrated limestone-water slurry, International Journal of Fluid Mechanics
Research, Vol. 44, No. 4, 2017, pp. 349-356.
[16] Kaushal K., Satish K., Ajay K., Effect of additives on static settled concentration, pH and viscosity of bottom ash-water suspension, Journal of Mechanical Engineering, Vol. 68, No. 3, 2018, pp. 49-58.
[17] Jaworska B. and Bartosik A., Influence of deflocculant on shear stress in hydromixture flow, Journal of Physics: Conference Series, 1101: 012010, 2018.
[18] Peker S. M. and Helvaci S. S., Solid-liquid two phase flow, Elsevier: Amsterdam, 2008.
[19] Senapati P. K. and Mishra B. K., Rheological characterization of concentrated jarosite waste suspensions using Coutte & tube rheometry techniques, Powder Technology, Vol. 263, 2014, pp. 58-65.
[20] Krupicka J. and Matousek V., Gamma-raybased measurements of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps, Journal of Hydrology and Hydromechanics, Vol. 62, No. 2, 2014, pp. 126-132.
[21] Vlasak P., Matousek V., Chara Z., Krupicka J., Konfrst J. and Kesely M., Concentration distribution and deposition limit of mediumcoarse sand-water slurry in inclined pipe, Journal of Hydrology and Hydromechanics, Vol. 68, No. 1, 2020, pp. 83-91.
[22] Bartosik A., Simulations of frictional losses in a turbulent blood flow using three rheological models, WSEAS Transactions on Fluid Mechanics, Vol. 15, 2020, pp. 131-139.
[23] Kiljański T., Dziubiński M., Sęk J. and Antosik K., The use of fluids rheological properties measurements in engineering practice, Warsaw: EKMA, 2009.
[24] Rushd S., Hassan I., Sultan R. A., Kelessidis V. C., Rahman A., Hasan H. S. and Hasan A., Terminal settling velocity of a single sphere in drilling fluid, Particulate Science and Technology, 2018.
[25] Schramm G., A practical approach to rheology and rheometry, Gebrueder Haake, Karlsruhe 1994.
[26] He M., Wang Y., Forssberg E., Parameter studies on the rheology of limestone slurries, International Journal of Mineral Processing, Vol. 78, No 2, pp. 63-77.
[27] Michaels A. S. and Bolger J. C., Settling rates and sediment volumes of flocculated Kaolin suspensions, Journal of Industrial and Engineering Chemistry Fundamentals, Vol. 1, No. 1, 1962, pp. 24-33.