Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108260] Artykuł:

Tribochemical Interactions Between Graphene and ZDDP in Friction Tests for Uncoated and a-C:H-Coated HS6-5-2C steel

Czasopismo: Materials   Tom: 14, Strony: 1-16
ISSN:  1996-1944
Opublikowano: Czerwiec 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Joanna Kowalczyk orcid logo WMiBMKatedra Mechaniki**Takzaliczony do "N"Inżynieria mechaniczna1446.6746.66  
Monika Madej orcid logo WMiBMKatedra Mechaniki**Takzaliczony do "N"Inżynieria mechaniczna1446.6746.66  
Wojciech Dzięgielewski Niespoza "N" jednostki14.00.00  
Andrzej Kulczycki Niespoza "N" jednostki14.00.00  
Magdalena Żółty Niespoza "N" jednostki14.00.00  
Dariusz Ozimina orcid logo WMiBMKatedra Mechaniki**Takzaliczony do "N"Inżynieria mechaniczna1446.6746.66  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

graphene  diamond-like carbon  zinc dialkyldithiophosphate  lubricant additive  surface layers of solid elements 



Abstract:

If a lubricant contains structures capable of conducting energy, reactions involving zinc dialkyldithiophosphate (ZDDP) may take place both very close to and away from the solid surfaces, with this indicating that ZDDP can be a highly effective anti-wear (AW) additive. The central thesis of this article is that the tribocatalytic effect is observed only when the energy emitted by the solids is transmitted by ordered molecular structures present in the lubricant, e.g., graphene. The friction tests were carried out for 100Cr6 steel balls in a sliding contact with uncoated or W-DLC-coated HS6-5-2C steel discs in the presence of polyalphaolefin 8 (PAO 8) as the lubricant, which was enhanced with graphene and/or ZDDP. There is sufficient evidence of the interactions occurring between ZDDP and graphene and their effects on the tribological performance of the system. It was also found that the higher the concentration of zinc in the wear area, the lower the wear. This was probably due to the energy transfer resulting from the catalytic decomposition of ZDDP molecules. Graphene, playing the role of the catalyst, contributed to that energy transfer.



B   I   B   L   I   O   G   R   A   F   I   A
La, D.D.
Truong, T.N.
Pham, T.Q.
Vo, H.T.
Tran, N.T.
Nguyen, T.A.
Nadda, A.K.
Nguyen, T.T.
Chang, S.W.
Chung, W.J.
et al. Scalable Fabrication of Modified Graphene Nanoplatelets as an Effective Additive for Engine Lubricant Oil. Nanomaterials 2020, 10, 877. [Google Scholar] [CrossRef]
Ozimina, D.
Ryniewicz, A.M. Eksploatation of Tribological Systems. Znaczenie Tribologii w Eksploatacji Objektów Technicznych
Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland, 2013
Volume 1. [Google Scholar]
Huynh, K.K.
Tieu, K.A.
Pham, S.T. Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil. Lubricants 2021, 9, 35. [Google Scholar] [CrossRef]
Barnes, A.M.
Bartle, K.D.
Thibon, V.R.A. A Review of Zinc Dialkyldithiophosphates (ZDDPS): Characterisation and Role in the Lubricating Oil. Tribol. Int. 2001, 34, 389–395. [Google Scholar] [CrossRef]
Johnson, D.W.
Hils, J.E. Phosphate Esters, Thiophosphate Esters and Metal Thiophosphates as Lubricant Additives. Lubricants 2013, 1, 132–148. [Google Scholar] [CrossRef]
Ozimina, D. Antiwear Surface Layers in Tribological Systems
Wydawnictwo Politechniki Świętokrzyskiej, M33: Kielce, Poland, 2002. [Google Scholar]
Ramezani, M.
Schmid, S.R. Bio-Based Lubricants for Forming of Magnesium. J. Manuf. Process. 2015, 19, 112–117. [Google Scholar] [CrossRef]
Bukrajewski, P.
Deliś, M.
Desaniuk, T.
Dzięgielewski, W.
Kałużny, J.
Kulczycki, A.
Ozimina, D. The Influence of Ordered Carbon Structures on the Mechanism of Tribocatalysis. Tribol. Int. 2020, 151, 106518. [Google Scholar] [CrossRef]
Jain, M.C.
Unnikrishnan, R.
Martin, V.
Mehta, A.K.
Bhatnagar, A.K. An ESCA Study of the Effectiveness of Antiwear and Extreme-Pressure Additives Based on Substituted Phosphorodithioate Derivatives, and a Comparison with ZDDP. Tribotest 2006, 8, 107–122. [Google Scholar] [CrossRef]
Martin, J.M.
Belin, M.
Mansot, J.L.
Dexpert, H.
Lagarde, P. Friction-Induced Amorphization with ZDDP-an EXAFS Study. ASLE Trans. 1985, 19, 523–531. [Google Scholar] [CrossRef]
Martin, J.M.
Mansot, J.L.
Berbezier, I.
Balossier, G. Microstructural Aspects of Lubricated Mild Wear with Zinc Dialkyldithiophosphate. Wear 1986, 107, 355–366. [Google Scholar] [CrossRef]
Bell, J.C.
Delargy, K.M.
Seeney, A.M. The Removal of Substrate Material through Thick Zinc Dithiophosphate Anti-Wear Films. In Proceedings of the 18th Leeds/Lyon Symposium on Tribology, Lyon, France, 3–6 September 1991. [Google Scholar]
Bell, J.C.
Delargy, K.M. The Composition and Structure of Model Zinc Dialkyldithiophosphate Anti-Wear Films. In Proceedings of the 6th International Congress on Tribology, Budapest, Hungary, 30 August–2 September 1993
pp. 328–332. [Google Scholar]
McFadden, C.
Sotot, C. Adsorption and Surface Chemistry in Tribology. Tribol. Int. 1997, 30, 881–888. [Google Scholar] [CrossRef]
Luiz, J.F.
Spikes, H. Tribofilm Formation, Friction and Wear-Reducing Properties of Some Phosphorus-Containing Antiwear Additives. Tribol. Lett. 2020, 68, 1–24. [Google Scholar] [CrossRef]
Ding, H.
Yang, X.
Xu, L.
Li, S.
Xia, J. Tribological Behavior of Plant Oil-Based Extreme Pressure Lubricant Additive in Water-Ethylene Glycol Liquid. J. Renew. Mater. 2019, 7, 1391–1401. [Google Scholar] [CrossRef]
Yang, Y.
Zhang, C.H.
Wang, Y.
Dai, Y.J.
Luo, J.B. Friction and Wear Performance of Titanium Alloy Against Tungsten Carbide Lubricated with Phosphate Ester. Tribol. Int. 2016, 95, 27–34. [Google Scholar] [CrossRef]
Zheng, G.
Ding, T.
Zhang, G.
Xiang, X.
Xu, Y.
Ren, T.
Li, F.
Zheng, L. Surface Analysis of Tribofilm Formed by Phosphorus-Nitrogen (P-N) Ionic Liquid in Synthetic Ester and Water-Based Emulsion. Tribol. Int. 2017, 115, 212–221. [Google Scholar] [CrossRef]
Wu, Y.
He, Z.
Zeng, X.
Ren, T.
Vries, E.
Heide, E. Tribological and Anticorrosion Behaviour of Novel Xanthate-Containing Triazine Derivatives in Water-Glycol. Tribol. Int. 2017, 110, 113–124. [Google Scholar] [CrossRef]
Dzięgielewski, W.
Kowalczyk, J.
Kulczycki, A.
Madej, M.
Ozimina, D. Tribochemical Interactions between Carbon Nanotubes and ZDDP Antiwear Additive during Tribofilm Formation on Uncoated and DLC-Coated Steel. Materials 2020, 12, 2409. [Google Scholar] [CrossRef]
Schultrich, B. Hydrogenated Amorphous Carbon Films (a-C:H). In Tetrahedrally Bonded Amorphous Carbon Films I: Basics, Structure and Preparation
Springer: Berlin/Heidelberg, Germany, 2018
pp. 111–192. [Google Scholar]
Zahid, R.
Masjuki, H.H.
Varman, M.
Mufti, R.A.
Kalam, M.A.
Gulzar, M. Effect of Lubricant Formulations on the TribologicalPerformance of Self-Mated Doped DLC Contacts: A Review. Tribol. Lett. 2015, 58, 1–28. [Google Scholar] [CrossRef]
Kurcz, M. Obecne i Perspektywiczne Zastosowania Nanorurek Węglowych. Przemysł Chem. 2015, 94, 2117–2125. [Google Scholar]
Li, X.
Bouhon, A.
Li, L.
Peeters, F.M.
Sanyal, B. PAI-Graphene: A New Topological Semimetallic Two-Dimensional Carbon Allotrope with Highly Tunable Anisotropic Dirac Cones. Carbon 2020, 170, 477–486. [Google Scholar]
Rathi, T.
Kumbhare, V.R.
Majumder, M.K. Adsorption of Carbon Monoxide on Multilayered Graphene. In Proceedings of the 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27–29 November 2020
pp. 1–5. [Google Scholar]
Jiang, J.-W.
Leng, J.
Li, J.
Guo, Z.
Chang, T.
Guo, X.
Zhang, T. Twin Graphene: A Novel Two-Dimensional Semiconducting Carbon Allotrope. Carbon 2017, 118, 370–375. [Google Scholar] [CrossRef]
Zhang, W.
Zhou, M.
Zhu, H.
Tian, Y.
Wang, K.
Wei, J.
Ji, F.
Li, X.
Li, Z.
Zhang, P. Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives. J. Phys. D Appl. Phys. 2011, 44, 205303. [Google Scholar] [CrossRef]
Azman, S.S.N.
Zulkifli, N.W.M.
Masjuki, H.
Gulzar, M.
Zahid, R. Study of Tribological Properties of Lubricating Oil Blend Added with Graphene Nanoplatelets. J. Mater. Res. 2016, 31, 1932–1938. [Google Scholar] [CrossRef]
Saurín, N.
Sanes, J.
Bermúdez, M.D. New Graphene/Ionic Liquid Nanolubricants. Mater. Today Proc. 2016, 3, S227–S232. [Google Scholar] [CrossRef]
Garcia, I.
Guerra, S.
de Damborenea, J.
Conde, A. Reduction of the Coefficient of Friction of Steel-Steel Tribological Contacts by Novel Graphene-Deep Eutectic Solvents (DESs) Lubricants. Lubricants 2019, 7, 2–9. [Google Scholar] [CrossRef]
Płaza, S. The Adsorption of Zinc Dibutyldithiophpsphateson Iron and Iron Oxide Powders. ASLE Trans. 1987, 30, 233–240. [Google Scholar] [CrossRef]
Kupczyk, M.J.
Komolka, J.
Jenek, M. Badania Porównawcze Wybranych Właściwości Ostrzy Skrawających z Kutych, Walcowanych i Spiekanych Stali Szybkotnących. Zesz. Nauk. Politech. Rzesz. 2017, XXXIV, 343–352. [Google Scholar] [CrossRef]
Li, X.
He, L.
Li, Y.
Yang, Q. Diamond Deposition on Iron and Steel Substrates: A Review. Micromachines 2020, 11, 719. [Google Scholar] [CrossRef]