Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[108190] Artykuł:

Synthesis of self-adaptable energy aware software for heterogeneous multicore embedded systems

Czasopismo: Microelectronics Reliability   Tom: 123, Zeszyt: 08
ISSN:  0026-2714
Opublikowano: Sierpień 2021
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Roman Deniziak orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne5035.0049.50  
Leszek Ciopiński orcid logo WEAiIKatedra Systemów Informatycznych *Niespoza "N" jednostkiAutomatyka, elektronika, elektrotechnika i technologie kosmiczne5035.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


DOI LogoDOI    
Keywords:

Self-adaptivityEmbedded systemDevelopmental genetic programingMulticore system 



Abstract:

Contemporary embedded systems work in changing environments, some features (e.g., execution time, power consumption) of the system are often not completely predictable. Therefore, for systems with strong constraints, a worst-case design is applied. We observed that by enabling the self-adaptivity we may obtain highly optimized systems still guaranteeing the high quality of service. This paper presents a method of synthesis of real-time software for self-adaptive multicore systems. The method assumes that the system specification is given as a task graph. Then, the tasks are scheduled on a multicore architecture consisting of low-power and high-performance cores. We apply the developmental genetic programming to generate the self-adaptive scheduler and the initial schedule. The initial schedule is optimized, taking into consideration the power consumption, the real-time constraints as well as the self-adaptivity. The scheduler modifies the schedule during the system execution, whenever execution time of the recently finished task occurs other than assumed during the initial scheduling. We propose two models of self-adaptivity: self-optimization of power consumption and self-adaptivity of real-time scheduling. We present some experimental results for standard benchmarks, showing the advantages of our method in comparison with the worst case design used in existing approaches.