Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[106290] Artykuł:

The Numerical Analysis of the In‐Plane Constraint Influence on the Behavior of the Crack Subjected to Cyclic Loading

(Numeryczna analiza wpływu płaskich więzów geometrycznych na zachowanie pęknięcia poddanego cyklicznemu obciążeniu)
Czasopismo: Materials   Tom: 14(7), Zeszyt: 1764, Strony: 1-15
ISSN:  1996-1944
Opublikowano: Kwiecień 2021
Liczba arkuszy wydawniczych:  2.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jarosław Gałkiewicz orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Takzaliczony do "N"Inżynieria mechaniczna5070.00140.00  
Urszula Janus-Gałkiewicz orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Niespoza "N" jednostkiInżynieria mechaniczna5070.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

fatigue  fatigue crack growth  inplane constraints  Tstress  modified boundary layer model approach 



Abstract:

The paper presents the influence of in‐plane constraints defined by T‐stress on the behavior of a crack subjected to cyclic loading. In the analysis, a modified boundary layer model approach
was used in which the cohesive model was introduced. In the simulations, the constant maximum value of the stress intensity factor and four levels of T‐stress were defined. The model was subjected to ten repeated stress cycles. Based on the results obtained, an analysis of the effect of the in‐plane constraint on selected aspects of crack behavior was made. The strong influence of in‐plane constraint applied in the model on the crack closure and the fatigue crack growth rate was proven. Since the in‐plane constraint described the influence of geometry on the stress field surrounding the fatigue crack tip in real geometry, the results suggested that it is possible to create precise formulae connecting the level of the in‐plane constraint with the effective stress intensity factor range and to incorporate the T‐stress or Q‐stress level in the Paris law.



B   I   B   L   I   O   G   R   A   F   I   A
1. ASTM E 399‐83, Standard Test Method for Plane—Strain. Fracture Toughness of Metallic Measurement
ASTM International: West Conshohocken, PA, USA, 1983.
2. ASTM E 1737‐96, Standard Test Method for J‐Integral Characterization of Fracture Toughness
ASTM International: West Conshohocken, PA, USA, 1996.
3. Larsson, S.G.
Carlsson, A.J. Influence of Non‐Singular Stress Terms and Specimen Geometry on Small‐Scale Yielding at Crack Tips in Elastic‐Plastic Materials. J. Mech. Phys. Solid 1973, 21, 263–277.
4. Williams, M.L. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension. J. Appl. Mech. 1952, 19, 526–528.
5. Williams, M.L. On the stress distribution at the base of a stationary crack. J. Appl. Mech. 1957, 24, 109–114.
6. Al‐Ani, J.
Hancock, W.J. Dominance of Short Cracks in Tension and Bending. J. Mech. Phys. Solids 1991, 39, 23–43.
7. Du, Z.Z.
Hancock, J.W. The Effect of Non‐Singular Stresses on Crack‐Tip Constraint. J. Mech. Phys. Solids 1991, 39, 555–567.
8. Betegon, J.
Hancock, W. Two–Parameter Characterization of Elastic–Plastic Crack–Tip Fields. Trans. ASME 1991, 58, 104–110.
9. Elber, W. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 1970, 2, 37–44.
10. Codrington, J.
Kotousov, A. A crack closure model of fatigue crack growth in plates of finite thickness under small‐scale yielding conditions. Mech. Mater. 2009, 41, 165–173.
11. Zapatero, J.
Moreno, B.
Gonzalez‐Herrera, A. Fatigue crack closure determination by means of finite element analysis. Eng. Fract. Mech. 2008, 75, 41–57.
12. Masahiro, J. Fatigue damage and crack growth under variable amplitude loading with reference to the counting methods of stress–strain ranges. Int. J. Fatigue 2005, 27, 1006–1015.
13. Paris, P.
Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. 1963, 85, 528–533.
14. Simandjuntak, S.
Alizadeh, H.
Pavier, M.J.
Smith, D.J. Fatigue crack closure of a corner crack: A comparison of experimental results with finite element predictions. Int. J. Fatigue 2005, 27, 914–919.
15. Lund, J.R.
Byrne, J.P. Leonardo Da Vinciʹs tensile strength tests: implications for the discovery of engineering mechanics. Civ. Eng. Env. Syst. 2000, 18, 1–8.
16. Anderson, T.L.
Osage, D.A. API 579: a comprehensive fitness‐for‐service guide. Int. J. Press. Vessel. Pip. 2000, 77, 953–963, doi:10.1016/S0308‐0161(01)00018‐7.
17. Kocak, M.
Hadley, I.
Szavai, S.
Tkach, Y.
Taylor, N. FITNET Fitness‐For‐Service
GKSS Research Centre: Geesthacht, Germany : 2008.
18. Ai, Y.
Zhu, S.
Liao, D.
Correia, J.A.F.O.
de Jesus, A.M.P.
Keshtegar, B. Probabilistic modelling of notch fatigue and size effect of components using highly stressed volume approach. Int. J. Fatigue 2019, 127, 110–119.
19. El Khoukhi, D.
Morel, F.
Saintier, N.
Bellett, D.
Osmond, P.
Le, V.
Adrien, J. Experimental investigation of the size effect in high cycle fatigue: Role of the defect population in cast aluminium alloys. Int. J. Fatigue 2019, 129, 105222, doi:10.1016/j.ijfatigue.2019.105222.
20. Zhu, S.P.
Ai, Y.
Liao, D.
Correia, J.A.
De Jesus, A.M.
Wang, Q. Recent advances on size effect in metal fatigue under defects: A review. Int. J. Fract. 2021, doi:10.1007/s10704‐021‐00526‐x
21. Hua, D.
Maoa, J.
Wanga, X.
Mengd, F.
Songd, J.
Wanga, R. Probabilistic evaluation on fatigue crack growth behavior in nickel based GH4169 superalloy through experimental data. Eng. Fract. Mech. 2018, 196, 71–82,
22. Algarni, M.
Bai, Y.
Zwawi, M.
Ghazali, S. Damage Evolution Due to Extremely Low‐Cycle Fatigue for Inconel 718 Alloy. Metals 2019, 9, 1109, doi:10.3390/met9101109.
23. Tong, J. T‐stress and its implications for crack growth. Eng. Fract. Mech. 2002, 69, 1325–1337.
24. Ricardo, L.C.H. Influence of node release in crack propagation simulation under variable amplitude loading. Procedia Struct. Integr. 2016, 1, 166–172, doi:10.1016/j.prostr.2016.02.023.
25. Funari, M.F.
Lonetti, P. Initiation and evolution of debonding phenomena in layered structures. Theor. Appl. Fract. Mech. 2017, 92, 133–145.
26. Sudhakar, Y.
Wall, W.A. Mesh refitting approach: a simple method to model mixed‐mode crack propagation in nonlinear elastic solids. Adv. Model. Simul. Eng. Sci. 2017, doi:10.1186/s40323‐017‐0088‐x.
27. Funari, M.F.
Lonetti, P.
Spadea, S. A crack growth strategy based on moving mesh method and fracture mechanics. Theor. Appl. Fract. Mech. 2019, 102, 103–115.
28. Amini, M.R.
Shahani, A.R. Finite element simulation of dynamic crack propagation process using an arbitrary Lagrangian Eulerian formulation. Fatigue Fract. Engng. Mater. Struct. 2013, 36, 533–547, doi:10.1111/ffe.12023.
29. Xu, D.
Liu, Z.
Liu, X.
Zeng, Q.
Zhuang, Z. Modeling of dynamic crack branching by enhanced extended finite element method. Comput. Mech. 2014, 54, 489–502, doi:10.1007/s00466‐014‐1001‐9
30. O’Dowd, N.P.
Shih, C.F. Family of crack‐tip fields characterized by a triaxiality parameter—I. Structure of fields. J. Mech. Phys. Solids 1991, 39, 989–1015.
31. O’Dowd, N.P.
Shih, C.F. Family of crack‐tip fields characterized by a triaxiality parameter—II. Fracture applications. J. Mech. Phys. Solids 1992, 40, 939–963.
32. Anderson, T.L. Fracture Mechanics: Fundamentals and Applications
CRC Press LLC: Boca Raton, FL, USA, 2017.
33. Broberg, K.B. Cracks and Fracture
Academic Press: Cambridge, MA, USA, 1999.
34. Nakamura, T.
Park, D.M. Three‐dimensional crack front fields in a thin ductile plate. J. Mech. Phys. Solids 1990, 38, 787–812.
35. Faleskog, J.
Gao, X.
Shih, C.F. Cell model for nonlinear fracture analysis—I. Micromechanics calibration. Int. J. Fract. 1998, 89, 355–373.
36. Gao, X.
Faleskog, J.
Shih, C.F. Cell model for nonlinear fracture analysis—II. Fracture—Process calibration and verification. Int. J. Fract. 1998, 89, 375–398.
37. Solanki, K.
Daniewicz, S.R.
Newman, J.C., Jr. A new methodology for computing crack opening values from finite element analyses. Eng. Fract. Mech. 2004, 71, 1165–1175