Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Dane niepełne - brak identyfikatora "Web of Science" ! [104980] Artykuł: Short-term imputation of missing sound level data using selected computational intelligence methodsCzasopismo: 2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY, Kielce, 2020, IEEE Xplore Strony: 1-5Opublikowano: Grudzień 2020 Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 0 DOI Keywords: imputation  sound level  random forest  regression trees  vehicles  modeling of transport processes  |
The aim of the paper was to impute for the shortterm missing sound level data in the noise monitoring stations by applying the models which describe variability of sound level within the tested period. To build the model, the computational intelligence methods, like neural networks, fuzzy systems, or regression trees can be used. The latter approach was applied to build the models with the aid of Cubist regression tree and Random Forest regression software, using recorded equivalent sound levels.