Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[101830] Artykuł:

Applying latent class analysis in the identification of occupational accident patterns

Czasopismo: Scientific Papers of Silesian University of Technology – Organization and Management Series   Zeszyt: 146, Strony: 339-355
ISSN:  1641-3466
Opublikowano: 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Marzena Nowakowska orcid logo WZiMKKatedra Informatyki i Matematyki Stosowanej**Takzaliczony do "N"Nauki o zarządzaniu i jakości5035.0035.00  
Michał Pajęcki orcid logo WZiMKKatedra Informatyki i Matematyki Stosowanej**Takzaliczony do "N"Nauki o zarządzaniu i jakości5035.0035.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 70


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

occupational accident casualties  variable selection  classification probability 



Abstract:

Purpose: The objective of the study is to use selected data mining techniques to discover patterns of certain recurring mechanisms related to the occurrence of occupational accidents in relation to production processes.
Design/methodology/approach: The latent class analysis (LCA) method was employed in the investigation. This statistical modeling technique enables discovering mutually exclusive homogenous classes of objects in a multivariate data set on the basis of observable qualitative variables, defining the class homogeneity in terms of probabilities. Due to a bilateral agreement, Statistics Poland provided individual record-level real data for the research. Then the data were preprocessed to enable the LCA model identification. Pilot studies were conducted in relation to occupational accidents registered in production plants in 2008-2017 in the Wielkopolskie voivodeship.
Findings: Three severe accident patterns and two light accident patterns represented by latent classes were obtained. The classes were subjected to descriptive characteristics and labeling, using interpretable results presented in the form of probabilities classifying categories of observable variables, symptomatic for a given latent class.
Research limitations/implications: The results from the pilot studies indicate the necessity to continue the research based on a larger data set along with the analysis development, particularly as regards selecting indicators for the latent class model characterization.
Practical implications: The identification of occupational accident patterns related to the production process can play a vital role in the elaboration of efficient safety countermeasures that can help to improve the prevention and outcome mitigation of such accidents among workers.
Social implications: Creating a safe work environment comprises the quality of life of workers, their families, thus affirming the enterprises' principles and values in the area of corporate social responsibility.
Originality/value: The investigation showed that latent class analysis is a promising tool supporting the scientific research in discovering the patterns of occupational accidents. The proposed investigation approach indicates the importance for the research both in terms of the availability of non-aggregated occupational accident data as well as the type of value aggregation of the variables taken for the analysis.