Publikacje
Pomoc (F2)
[121770] Artykuł:

Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy

Czasopismo: Energies   Tom: 16(4)
ISSN:  1996-1073
Opublikowano: Luty 2023
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Mykola Radchenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka20.00.00  
Andrii Radchenko Niespoza "N" jednostki20.00.00  
Eugeniy Trushliakov Niespoza "N" jednostki5.00.00  
Hanna Koshlak orcid logo WiŚGiEKatedra Inżynierii SanitarnejTakspoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka50140.00.00  
Roman Radchenko Niespoza "N" jednostkiInżynieria mechaniczna5.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

air conditioning system  load range  refrigeration capacity excess  threshold temperature  level of loading 



Abstract:

This paper focuses on the application of speed-regulated compressors (SRCs) to cover changeable heat loads with high efficiency in conventional air conditioning systems (ACS) as well as in the more advanced variable refrigerant flow (VRF)-type outdoor and indoor ACS. In reality, an SRC is an oversized compressor, although it can operate efficiently at part loads. The higher the level of regulated loads (LRL) of the SRC, the more the compressor is oversized. It is preferable to reduce the size of the SRC by covering the peak loads and recouping the excessive refrigeration energy reserved at decreased actual loads within the range of regulated loads. Therefore, the range of changeable loads is chosen as the object to be narrowed by using the reserved refrigeration capacity. Thus, the general fundamental approach of dividing the overall heat load range of the ACS into the ranges with changeable and unchangeable loads, as previously developed by the authors, is applied for the range of primary changeable loads. Due to this innovative step, the principle of two-stage outdoor air conditioning according to changeable and unchangeable loads, also proposed by the authors, has been extended over the range of primary changeable loads to reduce the level of refrigeration capacity regulation and SRC size. To realize this, part of the changeable load range is offset by the reserved refrigeration capacity, leading to a reduction in the changeable load range and the SRC size by approximately 20% for temperate climatic conditions.



B   I   B   L   I   O   G   R   A   F   I   A
Gayeski, N.T.
Armstrong, P.R.
Norford, L.K. Predictive pre-cooling of thermo-active building systems with low-lift chillers. HVAC&R Res. 2012, 18, 1–16. [Google Scholar]
Southard, L.E.
Liu, X.
Spitler, J.D. Performance of HVAC systems at ASHRAE HQ. ASHRAE J. 2014, 56, 14–24. [Google Scholar]
Khliyeva, O.
Shestopalov, K.
Ierin, V.
Zhelezny, V.
Chen, G.
Gao, N. Environmental and energy comparative analysis of expediency of heat-driven and electrically-driven refrigerators for air conditioning application. Appl. Therm. Eng. 2022, 219, 119533. [Google Scholar] [CrossRef]
Gluesenkamp, K.
Hwang, Y.
Radermacher, R. High efficiency micro trigeneration systems. Appl. Therm. Eng. 2013, 50, 6. [Google Scholar] [CrossRef]
Yang, Z.
Korobko, V.
Radchenko, M.
Radchenko, R. Improving thermoacoustic low temperature heat recovery systems. Sustainability 2022, 14, 12306. [Google Scholar] [CrossRef]
Yang, Z.
Radchenko, R.
Radchenko, M.
Radchenko, A.
Kornienko, V. Cooling potential of ship engine intake air cooling and its realization on the route line. Sustainability 2022, 14, 1974710. [Google Scholar] [CrossRef]
Mohapatra, A.K. Comparative analysis of inlet air cooling techniques integrated to cooled gas turbine plant. J. Energy Inst. 2015, 88, 344–358. [Google Scholar] [CrossRef]
Radchenko, A.
Radchenko, N.
Tsoy, A.
Portnoi, B.
Kantor, S. Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine. In AIP Conference Proceedings 2020
AIP Publishing LLC: Melville, NY, USA, 2020. [Google Scholar] [CrossRef]
Radchenko, A.
Radchenko, M.
Mikielewicz, D.
Pavlenko, A.
Radchenko, R.
Forduy, S. Energy saving in trigeneration plant for food industries. Energies 2022, 15, 1163. [Google Scholar] [CrossRef]
Rocha, M.S.
Andreos, R.
Simões-Moreira, J.R. Performance tests of two small trigeneration pilot plants. Appl. Therm. Eng. 2012, 41, 84–91. [Google Scholar] [CrossRef]
Yu, Z.
Shevchenko, S.
Radchenko, M.
Shevchenko, O.
Radchenko, A. Methodology of Designing Sealing Systems for Highly Loaded Rotary Machines. Sustainability 2022, 14, 15828. [Google Scholar] [CrossRef]
Khliyeva, O. New indicator for life cycle greenhouse gases emission assessment of household refrigerating appliances. Environ. Probl. 2019, 4, 39–44. [Google Scholar] [CrossRef]
Radchenko, A.
Scurtu, I.-C.
Radchenko, M.
Forduy, S.
Zubarev, A. Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Therm. Sci. 2022, 26, 185–194. [Google Scholar] [CrossRef]
Radchenko, A.
Radchenko, M.
Koshlak, H.
Radchenko, R.
Forduy, S. Enhancing the efficiency of integrated energy system by redistribution of heat based of monitoring data. Energies 2022, 15, 8774. [Google Scholar] [CrossRef]
Radchenko, M.
Mikielewicz, D.
Andreev, A.
Vanyeyev, S.
Savenkov, O. Efficient ship engine cyclic air cooling by turboexpander chiller for tropical climatic conditions. In Integrated Computer Technologies in Mechanical Engineering—2020
Nechyporuk, M., Pavlikov, V., Kritskiy, D., Eds.
Lecture Notes in Networks and Systems
Springer: Cham, Switzerland, 2021
Volume 188, pp. 498–507. [Google Scholar]
Kornienko, V.
Radchenko, R.
Radchenko, M.
Radchenko, A.
Pavlenko, A.
Konovalov, D. Cooling cyclic air of marine engine with water-fuel emulsion combustion by exhaust heat recovery chiller. Energies 2022, 15, 248. [Google Scholar] [CrossRef]
Ghatos, S.
Taha-Janan, M.
Mehdari, A. Thermodynamic model of a single stage H2O-LiBr absorption cooling. In E3S Web of Conferences 2021
EDP Sciences: Les Ulis, France, 2021
Volume 234, p. 00091. [Google Scholar]
Radchenko, R.
Radchenko, N.
Tsoy, A.
Forduy, S.
Zybarev, A.
Kalinichenko, I. Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage. In AIP Conference Proceedings
AIP Publishing LLC: Melville, NY, USA, 2020
Volume 2285, p. 030084. [Google Scholar] [CrossRef]
Yang, Z.
Kornienko, V.
Radchenko, M.
Radchenko, A.
Radchenko, R.
Pavlenko, A. Capture of pollutants from exhaust gases by low-temperature heating surfaces. Energies 2022, 15, 120. [Google Scholar] [CrossRef]
Yang, Z.
Kornienko, V.
Radchenko, M.
Radchenko, A.
Radchenko, R. Research of Exhaust Gas Boiler Heat Exchange Surfaces with Reduced Corrosion when Water-fuel Emulsion Combustion. Sustainability 2022, 14, 11927. [Google Scholar] [CrossRef]
Yang, Z.
Radchenko, M.
Radchenko, A.
Mikielewicz, D.
Radchenko, R. Gas turbine intake air hybrid cooling systems and a new approach to their rational designing. Energies 2022, 15, 1474. [Google Scholar] [CrossRef]
Radchenko, M.
Radchenko, A.
Radchenko, R.
Kantor, S.
Konovalov, D.
Kornienko, V. Rational loads of turbine inlet air absorption-ejector cooling systems. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 236, 450–462. [Google Scholar] [CrossRef]
Tarasova, V.
Kuznetsov, M.
Kharlampidi, D.
Kostikov, A. Development of a vacuum-evaporative thermotransformer for the cooling system at a nuclear power plant. East. -Eur. J. Enterp. Technol. 2019, 4, 45–56. [Google Scholar] [CrossRef]
Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Arch. Thermodyn. 2004, 25, 3–19. [Google Scholar]
Mikielewicz, D.
Klugmann, M.
Wajs, J. Flow boiling intensification in minichannels by means of mechanical flow turbulising inserts. Int. J. Therm. Sci. 2013, 65, 79–91. [Google Scholar] [CrossRef]
Khliyeva, O.
Zhelezny, V.
Lukianov, T.
Lukianov, N.
Semenyuk, V.
Moreir, A.L.N.
Murshed, S.M.S.
Palomo del Barrio, E.
Nikulin, N. A new approach for predicting the pool boiling heat transfer coefficient of refrigerant R141b and its mixtures with surfactant and nanoparticles using experimental data. J. Therm. Anal. Calorim. 2020, 142, 2327–2339. [Google Scholar] [CrossRef]
Kruzel, M.
Bohdal, T.
Dutkowski, K.
Kuczyński, W.
Chliszcz, K. Current Research Trends in the Process of Condensation of Cooling Zeotropic Mixtures in Compact Condensers. Energies 2022, 15, 2241. [Google Scholar] [CrossRef]
Kuczyński, W.
Kruzel, M.
Chliszcz, K. A Regressive Model for Periodic Dynamic Instabilities during Condensation of R1234yf and R1234ze Refrigerants. Energies 2022, 15, 2117. [Google Scholar] [CrossRef]
Kruzel, M.
Bohdal, T.
Dutkowski, K.
Radchenko, M. The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger. Energies 2022, 15, 5142. [Google Scholar] [CrossRef]
Wajs, J.
Mikielewicz, D.
Jakubowska, B. Performance of the domestic micro ORC equipped with the shell-and-tube condenser with minichannels. Energy 2018, 157, 853–861. [Google Scholar] [CrossRef]
Kuczyński, W.
Kruzel, M.
Chliszcz, K. Regression Model of Dynamic Pulse Instabilities during Condensation of Zeotropic and Azeotropic Refrigerant Mixtures R404A, R448A and R507A in Minichannels. Energies 2022, 15, 1789. [Google Scholar] [CrossRef]
Pavlenko, A.M.
Koshlak, H. Application of thermal and cavitation effects for heat and mass transfer process intensification in multicomponent liquid media. Energies 2021, 14, 7996. [Google Scholar] [CrossRef]
Dąbrowski, P.
Klugmann, M.
Mikielewicz, D. Channel Blockage and Flow Maldistribution during Unsteady Flow in a Model Microchannel Plate heat Exchanger. J. Appl. Fluid Mech. 2019, 12, 1023–1035. [Google Scholar] [CrossRef]
Dąbrowski, P.
Klugmann, M.
Mikielewicz, D. Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 2017, 38, 135–148. [Google Scholar] [CrossRef][Green Version]
Kumar, R.
Singh, G.
Mikielewicz, D. A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink. J. Heat Transf. 2018, 140, 72401–72410. [Google Scholar] [CrossRef]
Kumar, R.
Singh, G.
Mikielewicz, D. Numerical Study on Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink: Channels Variable Width Versus Variable Height Approach. J. Electron. Packag. 2019, 141, 21009–21011. [Google Scholar] [CrossRef]
Qian, Z.
Wang, Q.
Cheng, J.
Deng, J. Simulation investigation on inlet velocity profile and configuration parameters of louver fin. Appl. Therm. Eng. 2018, 138, 173–182. [Google Scholar] [CrossRef]
Yaïci, W.
Ghorab, M.
Entchev, E. 3D CFD study of the effect of inlet air flow maldistribution on plate-fin-tube heat exchanger design and thermal–hydraulic performance. Int. J. Heat Mass Transf. 2016, 101, 527–541. [Google Scholar] [CrossRef]
Zhelezny, V.
Khliyeva, O.
Lukianov, M.
Motovoy, I.
Ivchenko, D.A.
Faik, A.
Grosu, Y.
Nikulin, A.
Moreira, A.L.N. Thermodynamic properties of isobutane/mineral compressor oil and isobutane/mineral compressor oil/fullerenes C60 solutions. Int. J. Refrig. 2019, 106, 153–162. [Google Scholar] [CrossRef]
Dutkowski, K.
Kruzel, M. Microencapsulated PCM slurries’ dynamic viscosity experimental investigation and temperature dependent prediction model. Int. J. Heat Mass Transf. 2019, 145, 118741. [Google Scholar] [CrossRef]
Chen, G.
Zhelezny, V.
Khliyeva, O.
Shestopalov, K.
Ierin, V. Ecological and energy efficiency analysis of ejector and vapor compression air conditioners. Int. J. Refrig. 2017, 74, 127–135. [Google Scholar] [CrossRef]
Yu, Z.
Løvås, T.
Konovalov, D.
Trushliakov, E.
Radchenko, M.
Kobalava, H.
Radchenko, R.
Radchenko, A. Investigation of thermopressor with incomplete evaporation for gas turbine intercooling systems. Energies 2023, 16, 20. [Google Scholar] [CrossRef]
Yang, Z.
Konovalov, D.
Radchenko, M.
Radchenko, R.
Kobalava, H.
Radchenko, A.
Kornienko, V. Analyzing the efficiency of thermopressor application for combustion engine cyclic air cooling. Energies 2022, 15, 2250. [Google Scholar] [CrossRef]
Konovalov, D.
Radchenko, M.
Kobalava, H.
Radchenko, A.
Radchenko, R.
Kornienko, V.
Maksymov, V. Research of characteristics of the flow part of an aerothermopressor for gas turbine intercooling air. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 236, 634–646. [Google Scholar] [CrossRef]
Ierin, V.
Chen, G.
Volovyk, O.
Shestopalov, K. Hybrid two—Stage CO2 transcritical mechanical compression—Ejector cooling cycle: Thermodynamic analysis and optimization. Int. J. Refrig. 2021, 132, 45–55. [Google Scholar] [CrossRef]
Chen, G.
Ierin, V.
Volovyk, O.
Shestopalov, K. An improved cascade mechanical compression—Ejector cooling cycle. Energy 2019, 170, 459–470. [Google Scholar] [CrossRef]
Fan, C.
Pei, D.
Wei, H. A novel cascade energy utilization to improve efficiency of double reheat cycle. Energy Convers. Manag. 2018, 171, 1388–1396. [Google Scholar] [CrossRef]
Shukla, A.K.
Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling. Appl. Therm. Eng. 2017, 122, 380–388. [Google Scholar] [CrossRef]
Radchenko, M.
Radchenko, A.
Mikielewicz, D.
Radchenko, R.
Andreev, A. A novel degree-hour method for rational design loading. Proc. Inst. Mech. Eng. Part A J. Power Energy 2022. [Google Scholar] [CrossRef]
Dhaka, S.
Mathur, J.
Garg, V. Combined effect of energy efficiency measures and thermal adaptation on air conditioned building in warm climatic conditions of India. Energy Build. 2012, 55, 351–360. [Google Scholar] [CrossRef]
Fumo, N.
Mago, P.J.
Smith, A.D. Analysis of combined cooling, heating, and power systems operating following the electric load and following the thermal load strategies with no electricity export. Proc. Inst. Mech. Eng. Part A J. Power Energy 2011, 225, 1016–1025. [Google Scholar] [CrossRef]
Cardona, E.
Piacentino, A. A methodology for sizing a trigeneration plant in mediterranean areas. Appl. Therm. Eng. 2003, 23, 15. [Google Scholar] [CrossRef]
Ortiga, J.
Bruno, J.C.
Coronas, A. Operational optimization of a complex trigeneration system connected to a district heating and cooling network. Appl. Therm. Eng. 2013, 50, 1536–1542. [Google Scholar] [CrossRef]
Suamir, I.N.
Tassou, S.A. Performance evaluation of integrated trigeneration and CO2 refrigeration systems. Appl. Therm. Eng. 2013, 50, 1487–1495. [Google Scholar] [CrossRef]
Freschi, F.
Giaccone, L.
Lazzeroni, P.
Repetto, M. Economic and environmental analysis of a trigeneration system for food-industry: A case study. Appl. Energy 2013, 107, 157–172. [Google Scholar] [CrossRef]
Kavvadias, K.C.
Tosios, A.P.
Maroulis, Z.B. Design of a combined heating, cooling and power system: Sizing, operation strategy selection and parametric analysis. Energy Convers Manag. 2010, 51, 833–845. [Google Scholar] [CrossRef]
Forsyth, J.L. Gas turbine inlet air chilling for LNG. IGT Int. Liq. Nat. Gas Conf. Proc. 2013, 3, 1763–1778. [Google Scholar]
Kalhori, S.B.
Rabiei, H.
Mansoori, Z. Mashad trigeneration potential–An opportunity for CO2 abatement in Iran. Energy Conv. Manag. 2012, 60, 106–114. [Google Scholar] [CrossRef]
Shubenko, A.
Babak, M.
Senetskyi, O.
Tarasova, V.
Goloshchapov, V.
Senetska, D. Economic assessment of the modernization perspectives of a steam turbine power unit to the ultra-supercritical operation conditions. Int. J. Energy Res. 2022, 46, 23530–23537. [Google Scholar] [CrossRef]
Popli, S.
Rodgers, P.
Eveloy, V. Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization. Appl. Energy 2012, 93, 623–636. [Google Scholar] [CrossRef]
Bai, Z.
Liu, Q.
Gong, L.
Lei, J. Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production. Appl. Energy 2019, 253, 113491. [Google Scholar] [CrossRef]
Shukla, A.K.
Sharma, A.
Sharma, M.
Mishra, S. Performance improvement of simple gas turbine cycle with vapor compression inlet air cooling. Mater. Today Proc. 2018, 5, 19172–19180. [Google Scholar] [CrossRef]
Lee, Y.
Kim, W. Development of an Optimal Start Control Strategy for a Variable Refrigerant Flow (VRF). Syst. Energ. 2021, 14, 271. [Google Scholar] [CrossRef]
Radchenko, N.
Radchenko, A.
Tsoy, A.
Mikielewicz, D.
Kantor, S.
Tkachenko, V. Improving the efficiency of railway conditioners in actual climatic conditions of operation. In AIP Conference Proceedings 2020
AIP Publishing LLC: Melville, NY, USA, 2020
Volume 2285, p. 030072. [Google Scholar] [CrossRef]
Radchenko, N.
Trushliakov, E.
Radchenko, A.
Tsoy, A.
Shchesiuk, O. Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan. In AIP Conference Proceedings 2020
AIP Publishing LLC: Melville, NY, USA, 2020
Volume 2285, p. 030074. [Google Scholar] [CrossRef]
Liu, C.
Zhao, T.
Zhang, J. Operational electricity consumption analyze of VRF air conditioning system and air conditioning system based on building energy monitoring and management system. Procedia Eng. 2015, 121, 1856–1863. [Google Scholar] [CrossRef]
Khatri, R.
Joshi, A. Energy performance comparison of inverter based variable refrigerant flow unitary AC with constant volume unitary AC. Energy Procedia 2017, 109, 18–26. [Google Scholar] [CrossRef]
Park, D.Y.
Yun, G.
Kim, K.S. Experimental evaluation and simulation of a variable refrigerant-flow (VRF) air-conditioning system with outdoor air processing unit. Energy Build 2017, 146, 122–140. [Google Scholar] [CrossRef]
Thornton, B.
Wagner, A. Variable Refrigerant Flow Systems. Seattle WA: Pacific Northwest National Laboratory. 2012. Available online: http://www.gsa.gov/portal/mediaId/197399/fileName/GPG_Variable_Refrigerant_Flow_12-2012.action (accessed on 19 January 2020).
Chen, J.
Xie, W. Analysis on load-undertaking of fan coil unit with fresh air system. Adv. Mater. Res. 2013, 614, 678–681. [Google Scholar] [CrossRef]
Zhu, Y.
Jin, X.
Du, Z.
Fang, X.
Fan, B. Control and energy simulation of variable refrigerant flow air conditioning system combined with outdoor air processing unit. Appl. Therm. Eng. 2014, 64, 385–395. [Google Scholar] [CrossRef]
Lee, J.H.
Yoon, H.J.
Im, P.
Song, Y.H. Verification of energy reduction effect through control optimization of supply air temperature in VRF-OAP system. Energies 2018, 11, 49. [Google Scholar] [CrossRef][Green Version]
Pavlenko, A. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Sci. Eng. Prog. 2020, 15, 00439. [Google Scholar] [CrossRef]
Pavlenko, A. Change of emulsion structure during heating and boiling. Int. J. Energy A Clean Environ. 2019, 20, 291–302. [Google Scholar] [CrossRef]
Radchenko, M.
Radchenko, A.
Trushliakov, E.
Pavlenko, A.M.
Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation. Part 1: General approaches and criteria. Energies 2023, 16, 1381. [Google Scholar] [CrossRef]