Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[99710] Artykuł:

Efficient Stabilization of Mono and Hybrid Nanofluids

(Efficient Stabilization of Mono and Hybrid Nanofluids)
Czasopismo: Energies   Tom: 15, Zeszyt: 13, Strony: 1-26
ISSN:  1996-1073
Opublikowano: Lipiec 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Sylwia Wciślik orcid logo WiŚGiEKatedra Sieci i Instalacji SanitarnychTakzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

hybrid nanofluid  thermal conductivity  Brownian motions  ultrasonication  one- and two-step colloid stability method  sedimentation 



Abstract:

Currently; the transfer of new technologies makes it necessary to also control heat transfer in different industrial processes—both in practical and research—applications. Not so long ago water and ethylene glycol were the most frequently used media in heat transfer. However, due to their relatively low thermal conductivity, they cannot provide the fast and effective heat transfer necessary in modern equipment. To improve the heat transfer rate different additives to the base liquid are sought, e.g., nanoadditives that create mono and hybrid nanofluids with very high thermal conductivity. The number of scientific studies and publications concerning hybrid nanofluids is growing, although they still represent a small percentage of all papers on nanofluids (in 2013 it was only 0.6%, and in 2017—ca. 3%). The most important point of this paper is to discuss different ways of stabilizing nanofluids, which seems to be one of the most challenging tasks in nanofluid treatment. Other future challenges concerning mono and hybrid nanofluids are also thoroughly discussed. Moreover, a quality assessment of nanofluid preparation is also presented. Thermal conductivity models are specified as well and new representative mono and hybrid nanofluids are proposed.



B   I   B   L   I   O   G   R   A   F   I   A
Rostami, S.
Shahsavar, A.
Kefayati, G.
Shahsavar Goldanlou, A. Energy and exergy analysis of using turbulator in a parabolic trough solar collector filled with mesoporous silica modified with copper nanoparticles hybrid nanofluid. Energies 2020, 13, 2946. [Google Scholar] [CrossRef]
Taniguchi, N. On the basic concept of “nano-technology”. In Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 26–29 August 1974
Volume 5, Part II. pp. 8–23. [Google Scholar]
Maxwell, J.C. Electricity and Magnetism
Clarendon Press: Oxford, UK, 1873. [Google Scholar]
Bozorth, R.M. Ferromagnetism
Wiley-IEEE Press: New York, NY, USA, 1951
Van Nostrand. [Google Scholar]
Akoh, H.
Tsukasaki, Y.
Yatsuya, S.
Tasaki, A. Magnetic properties of ferromagnetic ultrafine particles prepared. J. Cryst. Growth 1978, 45, 495–500. [Google Scholar] [CrossRef]
Duncan, M.A.
Rouvray, D.H. Microclusters. Sci. Am. 1989, 261, 110–115. [Google Scholar] [CrossRef]
Siegel, R.W.
Eastman, J.A. A small revolution creates materials I atomic building block at a time. Logos 1993, 11, 2–7. [Google Scholar]
Hill, P.G.
Witting, H.
Demetri, E.P. Condensation of metal vapors during rapid expansion. J. Heat Transf. 1963, 85, 303–317. [Google Scholar] [CrossRef]
Andres, R.P.
Bowles, R.S.
Kolstad, J.J.
Calo, J.M. Generation of molecular clusters of controlled size. Surf. Sci. 1981, 106, 117–124. [Google Scholar] [CrossRef]
Brown, D.P.
Chung, J.N.
Crowe, C.T. A numerical simulation of nanocluster formation in supersonic expansion flows. Micromechanical Syst. 1992, 40, 211–225. [Google Scholar]
Choi, U.S.
Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows. J. Heat Transf. 1995, 66, 99–105. [Google Scholar]
Khoshvaght-Aliabadi, M.
Sahamiyan, M. Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS). Energy Convers. Manag. 2016, 108, 297–308. [Google Scholar] [CrossRef]
Wen, D.
Ding, Y. Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluid Nanofluid 2005, 1, 183–189. [Google Scholar] [CrossRef]
Qureshi, Z.A.
Ali, H.M.
Khushnood, S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transf. 2018, 127, 838–856. [Google Scholar] [CrossRef]
Orzechowski, T.
Stokowiec, K. Quasi-stationary phase change heat transfer on a fin. FM15—Experimental Fluid Mechanics. In EPJ Web of Conferences
Dancova, P., Vesely, M., Eds.
EPJ Web of Conferences Series
EPD Sciences: Paris, France, 2016
Volume 114, p. 02086. [Google Scholar] [CrossRef]
Radomska, E.
Mika, L.
Sztekler, K. The impact of additives on the main properties of phase change materials. Energies 2020, 13, 3064. [Google Scholar] [CrossRef]
Benkovičová, M.
Végsö, K.
Šiffalovič, P.
Jergel, M.
Majková, E.
Luby, S.
Šatka, A. Preparation of sterically stabilized gold nanoparticles for plasmonic applications. Chem. Pap. 2013, 67, 1225–1230. [Google Scholar] [CrossRef]
Suhaimi, N.S.
Md Din, M.F.
Rahman, A.R.A.
Hamid, M.H.A.
Amin, N.A.M.
Zamri, W.F.H.W.
Wang, J. Optimum electrical and dielectric performance of multi-walled carbon nanotubes doped disposed transformer oil. Energies 2020, 13, 3181. [Google Scholar] [CrossRef]
Sekar, A.D.
Jayabalan, T.
Muthukumar, H.
Chandrasekaran, N.I.
Mohamed, S.N.
Matheswaran, M. Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy 2019, 172, 173–180. [Google Scholar] [CrossRef]
Sahiner, N.
Seven, F. The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis. Energy 2014, 71, 170–179. [Google Scholar] [CrossRef]
Karimi-Nazarabad, M.
Goharshadi, E.K.
Entezari, M.H.
Nancarrow, P. Rheological properties of the nanofluids of tungsten oxide nanoparticles in ethylene glycol and glycerol. Microfluid Nanofluid 2015, 19, 1191–1202. [Google Scholar] [CrossRef]
Babar, H.
Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
Madhesh, D.
Parameshwaran, R.
Kalaiselvam, S. Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Exp. Therm. Fluid Sci. 2014, 52, 104–115. [Google Scholar] [CrossRef]
Wang, H.
Lu, Y.
Liu, H.
Yin, Y.
Liang, J. Preparation and Application of Magnetic Nano-Solid Acid Catalyst Fe3O4-PDA-SO3H. Energies 2020, 13, 1484. [Google Scholar] [CrossRef]
Mączka, M.
Gągor, A.
Macalik, B.
Pikul, A.
Ptak, M.
Hanuza, J. Order-disorder transition and weak ferromagnetism in the perovskite metal formate frameworks of [(CH3)(2)NH2][M(HCOO)(3)] and [(CH3)(2)ND2][M(HCOO)(3)] (M = Ni, Mn). Inorg. Chem. 2014, 53, 457–467. [Google Scholar] [CrossRef]
Sheikholeslami, M.
Ganji, D.D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 2014, 75, 400–410. [Google Scholar] [CrossRef]
Abadeh, A.
Mohammadi, M.
Passandideh-Fard, M. Experimental investigation on heat transfer enhancement for a ferrofluid in ahelically coiled pipe under constant magnetic field. J. Therm. Anal. Calorim. 2018, 135, 1069–1079. [Google Scholar] [CrossRef]
Rosensweig, R.E. Magnetic fluids. Annu. Rev. Fluid Mech. 1987, 19, 437–461. [Google Scholar] [CrossRef]
Hayat, T.
Nadeem, S. Heat transfer enhancement with Ag-CuO/water hybrid nanofluid. Results Phys. 2017, 7, 2317–2324. [Google Scholar] [CrossRef]
Esfe, M.H.
Alirezaie, A.
Rejvani, M. An applicable study on the thermal conductivity of SWCNT-MgO hybryd nanofluid and price-performance analysis for energy management. Appl. Therm. Eng. 2017, 111, 1202–1210. [Google Scholar] [CrossRef]
Marciak-Kozłowska, J.
Kozłowski, M.
Mucha, Z. Time and energy scales for thermal properties of nanoparticles. Mater. Sci. Forum 2002, 384–385, 75–78. [Google Scholar] [CrossRef]
Wciślik, S. A simple economic and heat transfer analysis of the nanoparticles use. Chem. Pap. 2017, 11696, 1–7. [Google Scholar] [CrossRef]
Sarkar, J.
Ghosh, P.
Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
Babu, J.A.R.
Kumar, K.K.
Rao, S.S. State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 77, 551–565. [Google Scholar] [CrossRef]
Sundar, L.S.
Singh, M.K.
Sousa, A.C.M. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 2014, 52, 73–83. [Google Scholar] [CrossRef]
Wu, S.
Ortiz, C.R. Experimental investigation of the effect of magnetic field on vapour absorption with LiBr-H2O nanofluid. Energy 2020, 193, 116640. [Google Scholar] [CrossRef]
Xiao, X.
Jia, H.
Wen, D.
Zhao, X. Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite. Energy 2020, 192, 116593. [Google Scholar] [CrossRef]
Lee, J.W.
Kang, Y.T. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy 2020, 53, 206–211. [Google Scholar] [CrossRef]
Vajjha, R.S.
Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 2009, 52, 4675–4682. [Google Scholar] [CrossRef]
Zhou, Y.
Zheng, S. Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling. Energy 2020, 202, 117747. [Google Scholar] [CrossRef]
Passandideh-Fard, A.A.M.
Maghrebi, M.J.
Mohammadi, M. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi metod. J. Therm. Anal. Calorim. 2018, 135, 1323–1334. [Google Scholar] [CrossRef]
Devendiran, D.K.
Amirtham, V.A. A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev. 2016, 60, 21–40. [Google Scholar] [CrossRef]
Guo, S.
Dong, S.
Wang, E. Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube /silica coaxial nanocables: Preparation and application as electrocatalysts for oxygen reduction. J. Phys. Chem. C 2008, 112, 2389–2393. [Google Scholar] [CrossRef]
Pavlenko, A.
Koshlak, H.
Slowak, A. Stability of multiphase liquid media. IOP C. Ser. Earth Env. 2019, 227, 1–11. [Google Scholar] [CrossRef]
Khan, S.I.U.
Alzahrani, E.
Khan, U.
Zeb, N.
Zeb, A. On mixed convection squeezing flow of nanofluids. Energies 2020, 13, 3138. [Google Scholar] [CrossRef]
Dey, D.
Kumar, P.
Samantaray, S. A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transf. Asian Res. 2017, 46, 1413–1442. [Google Scholar] [CrossRef]
Levine, S.
Dube, G.P. Interaction between two hydrophobic colloidal particles, using the approximate Debye-Huckel theory. I. General properties. Trans. Faraday Soc. 1940, 35, 1125–1141. [Google Scholar] [CrossRef]
Singh, P.K.
Khandelwal, D.
Sidhant, C.
Shubham, A.
Priyanshu, N.
Rasu, N.G. Nanofluid heat transfer mechanism and thermo-physical properties: A review. IJMET 2017, 8, 156–164. Available online: http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=8&IType=11 (accessed on 15 July 2020).
Cieslinski, J.T.
Ronewicz, K.
Smolen, S. Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids. Arch. Thermodyn. 2015, 36, 35–47. [Google Scholar] [CrossRef]
Hussein, A.M. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp. Therm. Fluid Sci. 2017, 88, 37–45. [Google Scholar] [CrossRef]
Prakash, V.
Rai, B.
Tyagai, V.K.
Niyogi, U.K. Dispersion and characterizations of nanofluids prepared with CuO and CNT nanoparticles. J. Indian Chem. Soc. 2015, 92, 1245–1251. [Google Scholar]
Lamas, B.
Abreu, B.
Fonseca, A.
Martins, N.
Oliveira, M. Assessing colloidal stability of long term MWCNTs based nanofluids. J. Colloid Interface Sci. 2012, 381, 17–23. [Google Scholar] [CrossRef]
Hung, Y.H.
Wang, W.P.
Hsu, Y.C.
Teng, T.P. Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids. Exp. Therm. Fluid Sci. 2017, 81, 43–55. [Google Scholar] [CrossRef]
Aberoumand, S.
Jafarimoghaddam, A. Tungsten (III) oxide (WO3)—Silver/transformer oil hybrid nanofluid: Preparation, stability, thermal conductivity and dielectric strength. Alex. Eng. J. 2016, 57, 169–174. [Google Scholar] [CrossRef]
Tran, P.X.
Soong, Y. Preparation of nanofluids using laser ablation in liquid technique. In Proceedings of the ASME Applied Mechanics and Material Conference 2007, Austin, TX, USA, 3–7 June 2007. [Google Scholar]
Akoh, H.
Tsukasaki, Y.
Yatsuya, S.
Tasaki, A. Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J. Cryst. Growth 1978, 45, 495–500. [Google Scholar] [CrossRef]
Loa, C.H.
Tsunga, T.T.
Lin, H.M. Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS). J. Alloys Compd. 2007, 434–435, 659–662. [Google Scholar] [CrossRef]
Lee, J.H.
Hwang, K.S.
Jang, S.P.
Lee, B.H.
Kim, J.H.
Choi, S.U.S.
Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 2008, 5, 2651–2656. [Google Scholar] [CrossRef]
Zhu, H.
Lin, Y.
Yin, Y. A novel one-step chemical method for preparation of copper nanofluids. Colloid Interface Sci. 2004, 277, 100–103. [Google Scholar] [CrossRef]
Wagener, M.
Murty, B.S.
Gunther, B. Preparation of metal nanosuspensions by high pressure DC sputtering on running liquids. Nanocrystalline Nanocomposite Mater. II 1997, 457, 149–154. [Google Scholar] [CrossRef]
Munkhbayar, B.
Tanshen, M.R.
Jeoun, J.
Chung, H.
Jeong, H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 2013, 39, 6415–6425. [Google Scholar] [CrossRef]
Mukherjee, S.
Paria, S. Preparation and Stability of Nanofluids—A Review. J. Mech. Civ. Eng. 2013, 9, 63–69. [Google Scholar] [CrossRef]
Mali, S.
Pise, A.
Acharya, A. Review on flow boiling heat transfer enhancement with nanofluids. IOSR J. Mech. Civ. Eng. 2014, 11, 43–48. [Google Scholar] [CrossRef]
Wang, X.Q.
Mujumdar, A.S. A review on nanofluids part II: Experiments and applications. Braz. J. Chem. Eng. 2008, 25, 631–648. [Google Scholar] [CrossRef]
Syam, S.L.
Venkata, R.E.
Singh, M.K.
DeSousa, A.C.M. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersedin ethylene glycol and water mixture. Chem. Phys. Lett. 2012, 554, 236–242. [Google Scholar] [CrossRef]
Jama, M.
Singh, T.
Gamaleldin, S.M.
Koc, M.
Samara, A.
Isaifan, R.J.
Atieh, M.A. Critical Review on Nanofluids: Preparation, Characterization, and Applications. J. Nanomater. 2016, 2016, 6717624. [Google Scholar] [CrossRef]
Kadhim, S.
Humud, H.
Abdulmajeed, I.M. Silver nanofluids prepared by pulse exploding wire. AARJMD 2014, 1, 2319–2801. [Google Scholar]
Cho, C.
Kang, C.
Ha, Y.C.
Jin, T.S.
Rim, G.H. Optimum discharge conditions for smaller particles from Ag wire explosion in liquid media. J. Phys. Soc. Jpn. 2011, 59, 3662–3665. [Google Scholar] [CrossRef]
Shehata, F.
Abdelhameed, M.
Fathy, A.
Elmahdy, M. Preparation and characteristics of Cu-Al2O3 Nanocomposite. Open J. Met. 2011, 1, 25–33. [Google Scholar] [CrossRef]
Esfe, M.H.
Esfandeh, S.
Saedodin, S.
Rostamian, H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 2017, 125, 673–685. [Google Scholar] [CrossRef]
Hamid, K.A.
Azmi, W.H.
Nabil, M.F.
Mamat, R. Experimental investigation of nanoparticle mixture ratios on TiO2-SiO2 nanofluids heat transfer performance under turbulent flow. Int. J. Heat Mass Transf. 2018, 118, 617–627. [Google Scholar] [CrossRef]
Nabil, M.F.
Azmi, W.H.
Hamid, K.A.
Mamat, R.
Hagos, F.Y. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. Int. Commun. Heat Mass Transf. 2017, 86, 181–189. [Google Scholar] [CrossRef]
Wei, B.
Zou, C.
Yuan, X.
Li, X. Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications. Int. J. Heat Mass Transf. 2017, 107, 281–287. [Google Scholar] [CrossRef]
Qing, S.H.
Rashmi, W.
Khalid, M.
Gupta, T.C.S.M.
Nabipoor, M.
Hajibeigy, M.T. Thermal conductivity and electrical properties of Hybrid SiO2-graphene naphthenic mineral oil nanofluid as potential transformer oil. Mater. Res. Express. 2017, 4, 015504. [Google Scholar] [CrossRef]
Shehata, F.
Fathy, A.
Abdelhameed, M.
Moustafa, S. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by insitu processing. Mater. Des. 2009, 30, 2756–2762. [Google Scholar] [CrossRef]
Colangelo, G.
Favale, E.
Miglietta, P.
Milanese, M.
de Risi, A. Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy 2016, 95, 124–136. [Google Scholar] [CrossRef]
Rabienataj Darzi, A.A.
Farhadi, M.
Sedighi, K.
Shafaghat, R.
Zabihi, K. Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes. Int. Commun. Heat Mass Transf. 2012, 39, 1425–1434. [Google Scholar] [CrossRef]
Setia, H.
Gupta, R.
Wanchoo, R. Stability of nanofluids. Mater. Sci. Forum 2013, 757, 139–149. [Google Scholar] [CrossRef]
Zhou, M.Z.
Xia, G.D.
Li, J.
Chai, L.
Zhou, L.J. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp. Therm. Fluid Sci. 2012, 36, 22–29. [Google Scholar]
Sarsam, W.S.
Amiri, A.
Kazi, S.N.
Badarudin, A. Stability and thermo-physical properties of non-covalently functionalized graphene nanoplatelets. Energy Convers. Manag. 2016, 116, 101–111. [Google Scholar] [CrossRef]
Sarsam, W.S.
Amiri, A.
Zubir, M.N.M.
Yarmand, H.
Kazi, S.N.
Badarudin, A. Stability and thermo-physical properties of water-based nano-fluids containing triethanolamine-treated graphene nanoplatelets with different specific surface. Colloids Surf. A 2016, 500, 17–31. [Google Scholar] [CrossRef]
Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571–581. [Google Scholar] [CrossRef]
Chung, S.J.
Leonard, J.P.
Nettleship, I.
Lee, J.K.
Soong, Y.
Martello, D.V.
Chyu, M.K. Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion. Powder Tech. 2009, 194, 1–2, 75–80. [Google Scholar] [CrossRef]
Silambarasan, M.
Manikandan, S.
Rajan, K.S. Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. Int. J. Heat Mass Transf. 2012, 55, 7991–8002. [Google Scholar] [CrossRef]
Yarmand, H.
Gharehkhani, S.
Shirazi, S.F.S.
Goodarzi, M.
Amiri, A.
Sarsam, W.S.
Alehashem, M.S.
Dahari, M.
Kazi, S.N. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int. Commun. Heat Mass Transf. 2016, 77, 15–21. [Google Scholar] [CrossRef]
Kwon, D.
Kim, H.
Leong, H. Heat and its effects to chemical mechanical polishing. J. Mater. Process. Technol. 2006, 178, 82–87. [Google Scholar] [CrossRef]
Yarmand, H.
Gharehkhani, S.
Ahmadi, G.
Shirazi, S.F.S.
Baradaran, S.
Montazer, E.
Zubir, M.N.M.
Alehashem, M.S.
Kazi, S.N.
Dahari, M. Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energy Convers. Manag. 2015, 100, 419–428. [Google Scholar] [CrossRef]
Zhang, P.
Hong, W.
Wu, J.F.
Liu, G.Z.
Xiao, J.
Chen, Z.B.
Cheng, H.B. Effect of surface modification on the suspension stability and thermal conductivity of carbon nanotubes nanofluids. Energy Procedia 2015, 69, 699–705. [Google Scholar] [CrossRef]
Singh, P.K.
Harikrishna, P.V.
Sundararajan, T.
Das, S.K. Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels. Exp. Therm. Fluid Sci. 2012, 42, 174–186. [Google Scholar] [CrossRef]
Uskokovic, V. Nanotechnologies: What we do not know. Technol. Soc. 2007, 29, 43–61. [Google Scholar] [CrossRef]
Odenbach, S. Ferrofluids: Magnetically controllable fluids and their applications. In Lecture Notes in Physics
Springer: Bremen, Germany, 2002
Volume 594, pp. 33–58. [Google Scholar] [CrossRef]
Lau, Z.Y.
Lee, K.C.
Soleimani, H.
Beh, H.G. Experimental study of electromagnetic-assisted rare-earth doped yttrium iron garnet (YIG) nanofluids on wettability and interfacial tension alteration. Energies 2019, 12, 3806. [Google Scholar] [CrossRef]
Sadeghi, R.
Etemad, S.G.
Keshavarzi, E.
Haghshenasfard, M. Investigation of alumina nanofluid stability by UV-vis spectrum. Microfluid Nanofluid 2015, 18, 1023–1030. [Google Scholar] [CrossRef]
West, J.
Sears, J.
Smith, S.
Carter, M. Photonic sintering—An example: Photonic curing of silver nanoparticles. In Sintering of Advanced Materials—Fundamentals and Processes
Woodhead Publishing: Oxford, UK, 2010
pp. 275–288. [Google Scholar]
Tiwari, K.A.
Ghosh, P.
Sarkar, J. Investigation of thermal Conductivity and viscosity of Nanofluids. J. Environ. Res. Dev. 2012, 2, 768–777. [Google Scholar]
Özerinç, S.
Kakaç, S.
Yazicioglu, A.G. Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluid Nanofluid 2010, 8, 145–170. [Google Scholar] [CrossRef]
Esfe, M.H.
Behbahani, P.M.
Arani, A.A.A.
Sarlak, M.R. Thermal conductivity enhancement of SiO2-MWCNT (85:15%)-EG hybrid nanofluids. J. Therm. Anal. Calorim. 2017, 128, 249–258. [Google Scholar] [CrossRef]
Toghraie, D.
Chaharsoghi, V.A.
Afrand, M. Measurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 2016, 125, 527–535. [Google Scholar] [CrossRef]
Harandi, S.S.
Karimipour, A.
Afrand, M.
Akbari, M.
D’Orazio, A. An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration. Int. Commun. Heat Mass Transf. 2016, 76, 171–177. [Google Scholar] [CrossRef]
Chougule, S.S.
Sahu, S.K. Comparative study on heat transfer enhancement of low volume concentration of al2o3–water and carbon nanotube–water nanofluids in laminar regime using helical screw tape inserts. J. Nanotechnol. Eng. Med. 2013, 4, 040904. [Google Scholar] [CrossRef]
Prasher, R.
Bhattacharya, P.
Phelan, P.E. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J. Heat Transf. 2006, 128, 588–595. [Google Scholar] [CrossRef]
Chon, C.H.
Kihm, K.D.
Lee, S.P.
Choi, S.U.S. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 2005, 87, 153107. [Google Scholar] [CrossRef]
Yu, W.
Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanopart. Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
Xuan, Y.
Li, Q.
Hu, W. Aggression structure and thermal conductivity of nanofluids. Am. Inst. Chem. Eng. 2003, 49, 1038–1043. [Google Scholar] [CrossRef]
Hamilton, R.
Crosser, O. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam. 1962, 125, 187–191. [Google Scholar] [CrossRef]