Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[99580] Artykuł:

Properties of a Three-Component Mineral Road Binder for Deep-Cold Recycling Technology

Czasopismo: Materials   Tom: 13, Zeszyt: 16, Strony: 1-13
ISSN:  1996-1944
Opublikowano: Sierpień 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Zdzisława Owsiak orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3042.0046.66  
Przemysław Czapik orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Niezaliczony do "N"Inżynieria lądowa, geodezja i transport4056.0046.66  
Justyna Zapała-Sławeta orcid logo WBiAKatedra Technologii i Organizacji Budownictwa *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3042.0046.66  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

cement bypass dust  cement paste  mortar  mixed mineral binder  physical properties 



Abstract:

This study examined the physical properties of a three-component mineral binder that is typically used in deep-cold recycling. Test binders were produced using Portland cement, hydrated lime, and cement bypass dust (CBPD) as a byproduct derived from cement production. The suitability of CBPD for use in road binders was assessed. Effects of the three-component binder composition on the setting time, soundness, consistency, and tensile and compressive strengths of the cement pastes and mortars were determined. The pastes and mortars of the same consistency obtained at different w/b ratios were tested. On this basis, the mixture proportions resulting in road binders satisfying the requirements of PN-EN 13282-2:2015 were determined. By mixing cement, lime, and CBPD during the tests, binder classes N1 to N3 were obtained. The replacement of 40% of cement mass with the CBPD high in free lime produced road binders suitable for recycled base layers. The total content of CBPD and hydrated lime in the road binder should not exceed 50% by mass. The potential risk of mortar strength reduction due to KCl recrystallization was discussed.



B   I   B   L   I   O   G   R   A   F   I   A
1. Buczyński P., Iwański M. The Influence of a Polymer Powder on the Properties of a Cold-Recycled Mixture with Foamed Bitumen. Materials 2019, 12, 4244, doi:10.3390/ma12244244.
2. Iwański M., Chomicz-Kowlaska A. Laboratory Study on Mechanical Parameters of Foamed Bitumen Mixture in the Cold Recycling Technology. Procedia Eng. 2013, 57, 433–442, doi:10.1016/j.proeng.2013.04.056.
3. Iwański M., Chomicz-Kowalska, A. Application of the Foamed Bitumen and Bitumen Emulsion to the Road Base Mixes in the Deep Cold Recycling Technology. Baltic J. Road Bridge Eng. 2016, 11, 93–101, doi:10.3846/bjrbe.2016.34.
4. Iwański M., Buczyński P., Mazurek G. The use of gabbroic dust in the cold recycling of asphalt paving mixes with foamed bitumen. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 763–773, doi:10.1515/bpasts-2016-0085.
5. Chomicz-Kowalska A., Maciejewski K. Performance and viscoelastic assement of high-recyle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. J. Clean. Prod. 2020, 23, 120517, doi:10.1016/j.jclepro.2020.120517.
6. Kukiełka J. Deep cold recycling on local asphalt road. Materiały Budowlane 2014, 12, 11–13.
7. Judycki J., Dołżycki B., Hunik K., Stienss M. Weryfikacja zasad projektowania mieszanek mineralno-cementowo-emulsyjnych
Gdańsk Univeristy of Technology: Gdańsk, Poland, 2006, 7-48.
8. Barnat-Hunek D., Góra J., Suchorab Z., Łagód G. 5—Cement kiln dust. In Waste and Supplementary Cementitious Materials in Concrete: Characterization, Properties and Applications, Sissique, R., Cachim, P., Eds. Woodhead Publishing: Cambridge, UK, 2018, pp. 149–180, doi:10.1016/B978-0-08-102156-9.00005-5.
9. Czapik P., Zapała-Sławeta J., Owsiak Z., Stępień P. Hydration of cement by-pass dust. Constr. Build Mat. 2020, 231, 117139, doi:10.1016/j.conbuildmat.2019.117139.
10. Iwański M., Buczyński P., Mazurek G. Optimization of the road binder in the layer the road construction. Constr. Build Mat. 2016, 125, 1044–1054, doi:10.1016/j.conbuildmat.2016.08.112.
11. Nocuń-Wczelik W., Stolarska K. Calorimetry in the studies of by-pass cement kiln dust as an additive to the calcium aluminate cement. J. Therm. Anal. Calorim. 2019, 138, 4561–4569, doi:10.1007/s10973-019-08913-2.
12. Owsiak Z., Czapik P., Zapała-Sławeta J. Testing the cement, hydrated lime and cement by-pass dust mixtures hydration. Roads Bridges—Drogi i Mosty 2020, 19, 135–147, doi:10.7409/rabdim.020.009.
13. Peethamparan S., Olek J., Lovell J. Influence of chemical and Physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization. Cem. Concr. Res. 2008, 38, 803–815, doi:10.1016/j.cemconres.2008.01.011.
14. Stryczek S., Gonet A., Czapik P. Developing technological properties of sealing slurries with the use of cement dust. AGH Drill. Oil Gas 2009, 26, 345–354.
15. Seo M., Lee S.-Y., Lee C., Cho S.-S. Recycling of Cement Kiln Dust as Raw Material for Cement. Environments 2019, 6, 113, doi:10.3390/environments6100113.
16. Adaska W.S., Taubert D.H. Beneficial Uses of Cement Kiln Dust. In Proceedings of the 2008 IEEE Cement Industry Technical Conference Record, Miami, FL, USA, 18–28 May 2008, doi:10.1109/CITCON.2008.24.
17. Sreekrishnavilasam A., Santagata M.C. Report No. FHWA/IN/JTRP-2005/10 Development of Criteria for the Utilization of Cement Kiln Dust (CKD) in Highway Infrastructures Joint Transportation Research Program, Purdue University: West Lafayette, IN, USA, 2006.
18. 2012—INFORMATOR SPC—Przemysł Cementowy w liczbach”, Polish Cement Association reports. Available online: https://www.polskicement.pl/2012-informator-spc-przemysl-cementowy-w-liczbach/ (accessed on 27 July 2020).
19. Abdel-Ghani N.T., El-Sayed H.A., El-Habak A.A. Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some “green” cement products. HBRC J. 2018, 14, 408–414, doi:10.1016/j.hbrcj.2017.11.001.
20. Darweesh, H.H.M. A Review Article on the Influence of the Electrostatic Precipitator Cement Kiln Dust Waste on the Environment and Public Health. Am. J. Biol. Environ. Stat. 2017, 3, 36–43, doi:10.11648/j.ajbes.20170303.11.
21. Taha R., Al-Rawas, A., Al-Harthy A., Qatan A. Use of Cement Bypass Dust as Filler in Asphalt Concrete Mixture. J. Mater. Civil Eng. 2002, 14, 338–343, doi:10.1061/(ASCE)0899-1561(2002)14:4(338).
22. Khater G.A. Use of bypass cement dust for production of glass ceramic materials. Adv. Appl. Ceram. 2006, 105, 107–111, doi:10.1179/174367606X86736.
23. Uliasz-Bocheńczyk A. Chemical characteristics of dust from cement kilns. Gospod. Surowcami Min. 2019, 35, 87–102, doi:10.24425/gsm.2019.128524.
24. 2019—Informator SPC—Przemysł Cementowy w iczbach, Polish Cement Association reports. Available online: https://www.polskicement.pl/2019-informator-spc-przemysl-cementowy-w-liczbach/ (accessed on 27 July 2020).
25. Siddique R. Utilization of cement kiln dust (CKD) in cement mortar and concrete-an overview. Resour. Conserv. Recycl. 2006, 48, 315–338, doi:10.1016/j.resconrec.2006.03.010.
26. Orešković M., Trifunović S., Mladenović G. Use of hydrated lime and cement bypass dust as alternative fillers in hot mix asphalt. In Proceedings of the 17th Colloquium Asphalt, Bitumen and Pavements, Bled, Slovenia, 27–29 November 2019.
27. Khodary F., Abd El-Sadek M.S., El-Shestawy H.S. Nano-Size Cement Bypass as Asphalt Modifier in Highway Construction. Int. J. Eng. Res. Appl. 2013, 3, 645–648.
28. Buczyński P., Iwański M. The Influence of Hydrated Lime, Portland Cement and Cement Dust on Rheological Properties of Recycled Cold Mixes with Foamed Bitumen. In Proceedings of the “Environmental Engineering” 10th International Conference, Vilnus, Lithuania, 27–28 April 2017
doi:10.3846/enviro.2017.135.
29. Buczyński P., Iwański M., Mazurek G. The water resistance of a recycled base with foamed bitumen in the aspect of road binder composition. Bud. Arch. 2016, 15, 19–29.
30. Omrani M.A., Modarres A. Emulsified cold recycled mixtures using cement kiln dust and coal waste ash-mechanical-environmental impacts. J. Clean. Prod. 2018, 199, 101–111, doi:10.1016/j.jclepro.2018.07.155.
31. Bahar R., Benazzoug M., Kenai S. Performance of compacted cement-stabilised soil. Cem. Concr. Compos. 2004, 26, 811–820
doi:10.1016/j.cemconcomp.2004.01.003.
32. Mahamedi A., Khemissa M. Stabilization of an expansive overconsolidated clay using hydraulic binders. HBRC J. 2015, 11, 82–90, doi:10.1016/j.hbrcj.2014.03.001.
33. Pérez P., Agrela F., Herrador R., Ordoñez J. Application of cement-treated recycled materials in the construction of a section of road in Malaga, Spain. Constr. Build. Mat. 2013, 44, 593–599, doi:10.1016/j.conbuildmat.2013.02.034.
34. Pizon J., Łaźniewska-Piekarczyk B. Efficiency assessment of admixtures and cement kiln dust with cooperation with different phase composition slag blended cements. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 032088, doi:10.1088/1757-899X/603/3/032088.
35. Czarnecki L., Kurdowski W. Tendencje kształtujące przyszłość betonu. Budownictwo Technologie Architektura 2007, 1, 50–55.
36. Atkinson A. C., Donev A. N. Optimum Experimental Designs, Oxford Science Publications, Clarendon Press, Oxford, 1992.
37. Polish Committee for Standardization. Hydraulic Road Binders. Normal Hardening Hydraulic Road Binders. Composition, Specifications and Conformity Criteria, PN-EN 13282-2:2015, Polish Committee for Standardization: Warsaw, Poland, 2015.
38. Lazić Ž.R. Design of Experiments in Chemical Engineering: A Practical Guide, Wiley-VCH: Weinheim, Germany, 2004.
39. Polish Committee for Standardization. Methods of Testing Cement. Chemical Analysis of Cement, PN-EN 196-2:2013, Polish Committee for Standardization: Warsaw, Poland, 2013.
40. Polish Committee for Standardization. Methods of Testing Cement. Determination of Setting Times and Soundness, PN-EN 196-3:2016, Polish Committee for Standardization: Warsaw, Poland, 2016.
41. Polish Committee for Standardization. Methods of Testing Cement. Determination of Fineness, PN-EN 196-6:2018, Polish Committee for Standardization: Warsaw, Poland, 2018.
42. Polish Committee for Standardization. Building Mortars—Testing of Physical and Mechanical Properties, PN 85/B-04500, Polish Committee for Standardization: Warsaw, Poland, 1985.
43. Polish Committee for Standardization. Methods of Test for Mortar for Masonry. Determination of Consistence of Fresh Mortar (by Flow Table), PN-EN 1015-3:2000/A1:2005, Polish Committee for Standardization: Warsaw, Poland, 2005.
44. Polish Committee for Standardization. Methods of Testing Cement. Determination of Strength, PN-EN 196-1:2016, Polish Committee for Standardization: Warsaw, Poland, 2016.
45. Neville A.M. Properties of Concrete, 5th ed. Pearson: Harlow, UK, 2011.