Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[98430] Artykuł:

Occurrence of the pollutant first flush phenomenon on the example of the stormwater sewer system in Kielce – case study

(Występowanie zjawiska pierwszej fali zanieczyszczeń na przykładzie kanalizacji deszczowej w Kielcach - studium przypadku)
Czasopismo: Desalination and Water Treatment   Tom: 199, Strony: 169-178
ISSN:  1944-3986
Opublikowano: Wrzesień 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jarosław Górski orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Katarzyna Górska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka1716.67.00  
Łukasz Bąk orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Aleksandra Sałata orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Joanna Muszyńska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka1716.67.00  
Jarosław Gawdzik orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Stormwater  First flush phenomenon  Total suspended solids  Urban catchment 



Abstract:

This paper attempts to describe the occurrence of the pollutant first flush phenomenon in the stormwater sewer system in two urban catchments located in different parts of the city of Kielce. The research covered measurements of concentration variations of the total suspended solids (TSS) during runoff events caused by precipitation of varied nature and events resulting from snowmelt. The flow rates and precipitation values recorded were used for the analyses. Based on the calculations, pollutographs were plotted to illustrate the characteristics of the first flush phenomenon in the catchments in question. Nine events from the period of 2009–2010 and five events from 2018 were selected for the analysis. In the first case, the maximum flow rates and durations of the event ranged as follows: 0.037–0.312 m 3 s –1 and 120–540 min, in the second: 0.209–4.530 m 3 s –1 and 150–1,000 min. They were caused by precipitation depth of 3.6–20 mm. The greatest TSS concentration recorded
for the rainfall events was 10,621 mg dm –3 , and for snowmelts – 7,432 mg dm –3 . An analysis of the occurrence of the pollutant first flush, in relation to the mass of TSS in individual events, showed significant differences in the course of the process. The first flush phenomenon does not occur in smaller catchment areas, and those with a greater degree of land sealing. The first 30%, 25%, and 20% of the runoff volume (%V) carried up to 47%, 40%, and 34% of the TSS mass (%M). In the larger catchment, having six times greater area and a slightly lower degree of land sealing, the first flush phenomenon occurs virtually for every event (depending on the criterion %M/%V adopted). The initial 30%, 25%, and 20% of the cumulated runoff volume carried respectively: from 53% to 75%, from 47% to 69%, and from 39% to 60% of the TSS mass.



B   I   B   L   I   O   G   R   A   F   I   A
[1] G. Mangani, A. Berloni, F. Bellucci, F. Tatano, M. Maione, Evaluation of the pollutant content in road runoff first flush waters, Water Air Soil Pollut., 160 (2005) 213–228.
[2] P. Mahbub, A. Goonetilleke, G.A. Ayoko, P. Egodawatta, T. Yigitcanlar, Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia, Water Sci. Technol., 63 (2011) 2077–2085.
[3] M.K. Stenstrom, M. Kayhanian, First Flush Phenomenon Characterization, Report to the California Department of Transportation, Division of Environmental Analysis, Sacramento, 2005.
[4] J. Królikowska, A. Królikowski, Precipitation Water. Drainage, Management, Pre-treatment and Use, Seidel-Przywecki, Piaseczno, 2012 (in Polish).
[5] A. Mudhoo, V.K. Garg, S. Wang, Removal of heavy metals by biosorption, Environ. Chem. Lett., 10 (2012) 109–117.
[6] Ł. Bąk, J. Górski, K. Górska, B. Szeląg, Suspended solids and heavy metals content of selected rainwater waves in an urban catchment area: a case study, Ochr Sr, 34 (2012) 49–52 (in Polish).
[7] M. Widomski, A. Musz, D. Gajuk, G. Łagód, Numerical modeling in quantitative and qualitative analysis of storm sewage system extension, Ecol. Chem. Eng. A, 19 (2012) 471–481.
[8] J.H. Lee, S.L. Lau, M. Kayhanian, M.K. Stenstrom, Seasonal first flush phenomenon of urban stormwater discharges, Water Res., 38 (2004) 4153–4163.
[9] J.H. Lee, K.W. Bang, Characterization of urban stormwater runoff, Water Res., 34 (2000) 1773–1780.
[10] J. Gasperi, M.C. Gromaire, M. Kafi, R. Moilleron, G. Chebbo, Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems, Water Res., 44 (2010) 5875–5886.
[11] U.M. Joshi, R. Balasubramanian, Characteristics and environmental mobility of trace elements in urban runoff, Chemosphere, 80 (2010) 310–318.
[12] I. Gnecco, C. Berretta, L.G. Lanza, P. La Barbera, Storm water pollution in the urban environment of Genoa, Italy, Atmos. Res., 77 (2005) 60–73.
[13] J. Sternbeck, A. Sjodin, K. Andreasson, Metal emissions from road traffic and the influence of resuspension–Results from two tunnel studies, Atmos. Environ., 36 (2002) 4735–4744.
[14] B. Bergbäck, K. Johansson, U. Mohlander, Urban metal flows–a case study of Stockholm. Review and conclusions, Water Air Soil Pollut. Focus, 1 (2001) 3–24.
[15] A. Królikowski, K. Garbarczyk, J. Gwoździej-Mazur, A. Butarewicz, Sediments Formed in Stormwater Sewer Facilities, Monograph 35, Polish Academy of Sciences, Lublin, 2005 (in Polish).
[16] Z. Polkowska, J. Namieśnik, Road and roof runoff waters as a source of pollution in a big urban agglomeration (Gdańsk, Poland), Ecol. Chem. Eng. S, 15 (2008) 375–385.
[17] M. Mrowiec, Effective Dimensioning and Dynamic Regulation of Sewage Retention Reservoirs, Czestochowa University of Technology, Czestochowa, 2009 (in Polish).
[18] F.J. Charters, T.A. Cochrane, A. O’Sullivan, Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate, Sci. Total Environ., 550 (2016) 265–272.
[19] M. Mrowiec, T. Kamizela, M. Kowalczyk, Occurrence of first flush phenomenon in drainage system of Częstochowa, Environ. Prot. Eng., 35 (2009) 73–80.
[20] J.H. Lee, K.W. Bang, L.H. Ketchum Jr., J.S. Choe, M.J. Yu, First flush analysis of urban storm runoff, Sci. Total Environ., 293 (2002) 163–175.
[21] M. Verdaguer, N. Clara, O. Gutiérrez, M. Poch, Application of ant-colony-optimization algorithm for improved management of first flush effects in urban wastewater systems, Sci. Total Environ., 485–486 (2014) 143–152.
[22] R.C. Thornton, A.J. Saul, Some quality characteristics of combined sewer flow, Public Health Eng., 24 (1986) 35–38.
[23] A. Saget, G. Chebbo, J.L. Bertrand-Krajewski, The first flush in sewer systems, Water Sci. Techol., 33 (1996) 101–108.
[24] L. Vorreiter, C. Hickey, Incidence of the first flush phenomenon in catchments of the Sydney region, Proc. Natl. Conf. Publ. Inst. Eng., 3 (1994) 359–364.
[25] A. Deletic, The first flush load of urban surface runoff, Water Res., 32 (1998) 2462–2470.
[26] M.P. Wanielista, Y.A. Yousef, Stormwater Management, John Wiley & Sons, New York, NY, 1993.
[27] J.J. Sansalone, S.G. Buchberger, Partitioning and first flush of metals in urban roadway storm water, J. Environ. Eng., 123 (1997) 134–143.
[28] P. Stahre, B. Urbonas, Stormwater Detention: For Drainage, Water Quality and CSO Management, 1st ed., Prentice Hall, New Jersey, 1990.
[29] B.C. Lee, S. Matsui, Y. Shimizu, T. Matsuda, Characterizations of the first flush in storm water runoff from an urban roadway, Environ. Technol., 26 (2005) 773–782.
[30] I. Gnecco, C. Berretta, L.G. Lanza, P. La Barbera, Quality of stormwater runoff from paved surfaces of two production sites, Water Sci. Techol., 54 (2006) 177–184.
[31] L.H. Kim, S.O. Ko, S. Jeong, Y. Jaeyoung, Characteristics of washed-off pollutants and dynamic EMCs in parking lots and bridges during a storm, Sci. Total Environ., 376 (2007) 178–184.
[32] D.T. McCarthy, A traditional first flush assessment of E. coli in urban stormwater runoff, Water Sci. Technol., 60 (2009) 2749–2757.
[33] J.H. Kang, M. Kayhanian, M.K. Stenstrom, Predicting the existence of stormwater first flush from the time of concentration, Water Res., 42 (2008) 220–228.
[34] K. Górska, Variability of Pollutants in Stormwater on the Example of a Selected Catchment, Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2012 (in Polish).
[35] J. Bertrand-Krajewski, P. Brian, O. Scrivener, Sewer sediment production and transport modelling: a literature review, J. Hydraul. Res., 31 (1993) 435–460.
[36] T. Larsen, K. Broch, M.R. Andersen, First flush effects in an urban catchment area in Aalborg, Water Sci. Technol., 37 (1998) 251–257.
[37] P.M. Bach, D.T. McCarthy, A. Deletic, Redefining the stormwater first flush phenomenon, Water Res., 44 (2010) 2487–2498.
[38] S. Todeschini, S. Manenti, E. Creaco, Testing an innovative first flush identification methodology against field data from an Italian catchment, J. Environ. Manage., 246 (2019) 418–425.
[39] PN-EN 872:2007, Water Quality – Determination of Suspended Solids – Method by Filtration Through Glass Fiber Filters (in Polish).
[40] PN-72/C-04559, Water and Waste Water–Determination of Total Suspended Solids, Mineral and Volatile by Weight Method (in Polish).
[41] Arbeitsblatt DWA-A 118, Hydraulische Bemessung und Nachweis von Entwässerungssystemen, Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Germany, 2006.
[42] B. Szeląg, A. Kiczko, J. Studziński, L. Dąbek, Hydrodynamic and probabilistic modelling of storm overflow discharges, J. Hydroinf., 10 (2018) 1–11.
[43] A. Djukić, B. Lekić, V. Rajaković-Ognjanović, D. Veljović, T. Vulić, M. Djolić, Z. Naunovic, J. Despotović, D. Prodanović, Further insight into the mechanism of heavy metals partitioning in stormwater runoff, J. Environ. Manage., 168 (2016) 104–110.
[44] J. Gasperi, M. Kafi-Benyahia, C. Lorgeoux, R. Moilleron, M.C. Gromaire, G. Chebbo, Wastewater quality and pollutant loads in combined sewers during dry weather periods, Urban Water J., 5 (2008) 305–314.
[45] J. Järveläinen, N. Sillanpää, H. Koivusalo, Land-use based stormwater pollutant load estimation and monitoring system design, Urban Water J., 14 (2017) 223–236.
[46] L.Q. Li, C.Q. Yin, Q.C He, L.L. Kong, H.L. Liu, Catchmentscale pollution process and first flush of urban storm runoff in Hanyang, Wuhan City, Acta Scientiae Circumstantiae, 7 (2006) 1057–1061.
[47] R. Nazahiyah, Z. Yusop, I. Abustan, Stormwater quality and pollution loading from an urban residential catchment in Johor, Malaysia, Water Sci Technol., 56 (2007) 1–9.