Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[98280] Artykuł:

Investigation of the Fracture Process of Explosively Welded AA2519–AA1050–Ti6Al4V Layered Material

Czasopismo: Materials   Tom: 13, Zeszyt: 10, Strony: 1-20
ISSN:  1996-1944
Opublikowano: Maj 2020
Liczba arkuszy wydawniczych:  1.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Dariusz Boroński Niespoza "N" jednostki20.00.00  
Ihor Dzioba orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Takzaliczony do "N"Inżynieria mechaniczna2070.0070.00  
Maciej Kotyk Niespoza "N" jednostki20.00.00  
Aleksandra Krampikowska orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa i transport50140.00140.00  
Robert Pała orcid logo WMiBMKatedra Podstaw Konstrukcji Maszyn*Takzaliczony do "N"Inżynieria mechaniczna2070.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

layered material  fracture process  experimental analysis  delamination  reduced temperatures 



Abstract:

The study presents an analysis of the cracking process of explosive welded layered
material AA2519–AA1050–Ti6Al4V (Al–Ti laminate) at ambient (293 K) and reduced (223 and 77
K) temperatures. Fracture toughness tests were conducted for specimens made of base materials
and Al–Ti laminate. As a result of loading, delamination cracking occurred in the bonding layer
of specimens made from Al–Ti laminate. To define the crack mechanisms that occur at the tested
temperatures, a fracture analysis was made using a scanning electron microscope. Moreover, acoustic
emission (AE) signals were recorded while loading. AE signals were segregated to link their groups
with respective cracking process mechanisms. Numerical models of the tested specimens were
developed, taking into account the complexity of the laminate structure and the ambiguity of the
cracking process. A load simulation using the finite element method FEM allowed calculating stress
distributions in the local area in the crack tip of the Al–Ti laminate specimens, which enabled the
explanation of significant material cracking process development aspects. Results analysis showed
an influence of interlayer delamination crack growth on the process of the Al–Ti laminate specimen
cracking and the level of KQ characteristics at different temperatures.



B   I   B   L   I   O   G   R   A   F   I   A
1. Findik, F. Recent developments in explosive welding. Mater. Des. 2011, 32, 1081–1093. [CrossRef]
2. Grachev, V.
Rozen, A.
Perelygin, Y.P.
Kireev, S.Y.
Los, I.S.
Rozen, A.A. Measuring corrosion rate and
protector effectiveness of advanced multilayer metallic materials by newly developed methods. Heliyon
2018, 4, e00731. [CrossRef] [PubMed]
3. Gladkovsky, S.
Kuteneva, S.
Sergeev, S. Microstructure and mechanical properties of sandwich copper/steel
composites produced by explosive welding. Mater. Charact. 2019, 154, 294–303. [CrossRef]
4. Tian, L.
Russell, A.
Riedemann, T.
Mueller, S.
Anderson, I. A deformation-processed
Al-matrix/Ca-nanofilamentary composite with low density, high strength, and high conductivity. Mater. Sci.
Eng. A 2017, 690, 348–354. [CrossRef]
5. Lee, J.
Bae, D.
Chung, W.
Kim, K.
Lee, J.
Cho, Y.-R. Effects of annealing on the mechanical and interface
properties of stainless steel/aluminum/copper clad-metal sheets. J. Mater. Process. Technol. 2007, 187, 546–549.
[CrossRef]
6. Grignon, F.
Benson, D.
Vecchio, K.
Meyers, M.A. Explosive welding of aluminum to aluminum: Analysis,
computations and experiments. Int. J. Impact Eng. 2004, 30, 1333–1351. [CrossRef]
7. Carvalho, G.
Mendes, R.
Leal, R.
Galvão, I.
Loureiro, A. Effect of the flyer material on the interface
phenomena in aluminium and copper explosive welds. Mater. Des. 2017, 122, 172–183. [CrossRef]
8. Mamalis, A.G.
Vaxevanidis, N.
Szalay, A.
Prohászka, J. Fabrication of aluminium/copper bimetallics by
explosive cladding and rolling. J. Mater. Process. Technol. 1994, 44, 99–117. [CrossRef]
9. Zhang, N.
Wang, W.
Cao, X.
Wu, J. The effect of annealing on the interface microstructure and mechanical
characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Mater. Des. 2015, 65,
1100–1109. [CrossRef]
10. Yan, Y.
Zhang, J.
Shen, W.
Wang, J.
Zhang, L.
Chin, B. Microstructure and properties of magnesium
AZ31B–aluminum 7075 explosively welded composite plate. Mater. Sci. Eng. A 2010, 527, 2241–2245.
[CrossRef]
11. Aizawa, Y.
Nishiwaki, J.
Harada, Y.
Muraishi, S.
Kumai, S. Experimental and numerical analysis of the
formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces. J. Manuf. Process. 2016,
24, 100–106. [CrossRef]
12. Sun, X.-J.
Tao, J.
Guo, X. Bonding properties of interface in Fe/Al clad tube prepared by explosive welding.
Trans. Nonferrous Met. Soc. China 2011, 21, 2175–2180. [CrossRef]
13. Balasubramanian, V.
Rathinasabapathi, M.
Raghukandan, K. Modelling of process parameters in explosive
cladding of mildsteel and aluminium. J. Mater. Process. Technol. 1997, 63, 83–88. [CrossRef]
14. Li, X.
Ma, H.
Shen, Z. Research on explosive welding of aluminum alloy to steel with dovetail grooves.
Mater. Des. 2015, 87, 815–824. [CrossRef]
15. Gerland, M.
Presles, H.
Guin, J.
Bertheau, D. Explosive cladding of a thin Ni-film to an aluminium alloy.
Mater. Sci. Eng. A 2000, 280, 311–319. [CrossRef]
16. Habib, M.A.
Keno, H.
Uchida, R.
Mori, A.
Hokamoto, K. Cladding of titanium and magnesium alloy
plates using energy-controlled underwater three layer explosive welding. J. Mater. Process. Technol. 2015,
217, 310–316. [CrossRef]
17. Mamalis, A.
Szalay, A.
Vaxevanidis, N.
Pantelis, D. Macroscopic and microscopic phenomena of
nickel/titanium “shape-memory” bimetallic strips fabricated by explosive cladding and rolling. Mater.
Sci. Eng. A 1994, 188, 267–275. [CrossRef]
18. Topolski, K.G.
Wieci ´nski, P.
Szulc, Z.
Gałka, A.
Garbacz, H. Progress in the characterization of explosively
joined Ti/Ni bimetals. Mater. Des. 2014, 63, 479–487. [CrossRef]
19. Kahraman, N.
Gülenç, B. Microstructural and mechanical properties of Cu–Ti plates bonded through
explosive welding process. J. Mater. Process. Technol. 2005, 169, 67–71. [CrossRef]
20. Chu, Q.
Zhang, M.
Li, J.
Yan, C. Experimental and numerical investigation of microstructure and mechanical
behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 2017, 689, 323–331.
[CrossRef]
21. Song, J.
Kostka, A.
Veehmayer, M.
Raabe, D. Hierarchical microstructure of explosive joints: Example of
titanium to steel cladding. Mater. Sci. Eng. A 2011, 528, 2641–2647. [CrossRef]
22. Neimitz, A.
Galkiewicz, J. Fracture toughness of structural components: Influence of constraint. Int. J. Press.
Vessel. Pip. 2006, 83, 42–54. [CrossRef]
23. Razavi, S.M.J.
Ayatollahi, M.R.
Solberg, K. A synthesis of geometry effect on brittle fracture. Eng. Fract.
Mech. 2018, 187, 94–102. [CrossRef]
24. Khoddam, S.
Tian, L.
Sapanathan, T.
Hodgson, P.D.
Zarei-Hanzaki, A. Latest Developments in Modeling
and Characterization of Joining Metal Based Hybrid Materials. Adv. Eng. Mater. 2018, 20, 1800048. [CrossRef]
25. Bazarnik, P.
Adamczyk-Cie´slak, B.
Gałka, A.
Płonka, B.
Snie˙zek, L.
Cantoni, M.
Lewandowska, M.
Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates
manufactured by explosive welding. Mater. Des. 2016, 111, 146–157. Available online: http://www.
sciencedirect.com/science/article/pii/S0264127516311510 (accessed on 19 May 2017). [CrossRef]
26. Acarer, M.
Gülenç, B.
Findik, F. Investigation of explosive welding parameters and their effects on
microhardness and shear strength. Mater. Des. 2003, 24, 659–664. [CrossRef]
27. Jemblie, L.
Bjaaland, H.
Nyhus, B.
Olden, V.
Akselsen, O.M. Fracture toughness and hydrogen embrittlement
susceptibility on the interface of clad steel pipes with and without a Ni-interlayer. Mater. Sci. Eng. A 2017,
685, 87–94. [CrossRef]
28. De Araújo, A.A.
Bastian, F.L.
Castrodeza, E.M. CTOD-R curves of the metal-clad interface of API X52 pipes
cladded with an Inconel 625 alloy by welding overlay. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 1477–1487.
[CrossRef]
29. Zhu, Z.
He, Y.
Zhang, X.
Liu, H.
Li, X. Effect of interface oxides on shear properties of hot-rolled stainless
steel clad plate. Mater. Sci. Eng. A 2016, 669, 344–349. [CrossRef]
30. Yazdani, M.
Toroghinejad, M.R.
Hashemi, S.M. Investigation of Microstructure and Mechanical Properties
of St37 Steel-Ck60 Steel Joints by Explosive Cladding. J. Mater. Eng. Perform. 2015, 24, 4032–4043. [CrossRef]
31. Rahmatabadi, D.
Hashemi, R.
Mohammadi, B.
Shojaee, T. Experimental evaluation of the plane stress
fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding
process. Mater. Sci. Eng. A 2017, 708, 301–310. [CrossRef]
32. Lynch, S.
Wanhill, R.
Byrnes, R.
Bray, G. Fracture Toughness and Fracture Modes of Aerospace
Aluminum–Lithium Alloys. In Aluminum-Lithium Alloy
Elsevier: Amsterdam, The Netherlands, 2014

pp. 415–455.
33. Foadian, F.
Soltanieh, M.
Adeli, M.
Etminanbakhsh, M. The Kinetics of TiAl3 Formation in Explosively
Welded Ti-Al Multilayers During Heat Treatment. Met. Mater. Trans. A 2016, 47, 2931–2937. [CrossRef]
34. Lazurenko, D.V.
Bataev, A.
Mali, V.I.
Mali, V.I.
Lozhkin, V.
Esikov, M.A.
Jorge, A. Explosively welded
multilayer Ti-Al composites: Structure and transformation during heat treatment. Mater. Des. 2016, 102,
122–130. [CrossRef]
35. Fronczek, D.M.
Wojewoda-Budka, J.
Chulist, R.
Sypien, A.
Korneva, A.
Szulc, Z.
Schell, N.
Zieba, P.
Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Des. 2016, 91,
80–89. [CrossRef]
36. Szachogłuchowicz, I.
Snie ˙zek, L.
Hutsaylyuk, V. Low cycle fatigue properties of AA2519–Ti6Al4V laminate ´
bonded by explosion welding. Eng. Fail. Anal. 2016, 69, 77–87. [CrossRef]
37. Boro ´nski, D.
Kotyk, M.
Ma´ckowiak, P.
Snie˙zek, L. Mechanical properties of explosively welded ´
AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater. Des. 2017,
133, 390–403. [CrossRef]
38. Gałka, A. Application of explosive metal cladding in manufacturing new advanced layered materials on the
example of titanium Ti6Al4V – aluminum AA2519 bond. J. Energ. Mater. 2015, 7, 73–79.
39. Boro ´nski, D.
Kotyk, M.
Ma´ckowiak, P. Fracture Toughness of Explosively Welded Al/Ti Layered Material in
Cryogenic Conditions. Procedia Struct. Integr. 2016, 2, 3764–3771. [CrossRef]
40. Physical Acoustics – AE Inspection Equipment | MISTRAS Group, (n.d.). Available online: https://www.
mistrasgroup.com/how-we-help/equipment/ae/ (accessed on 1 April 2020).
41. ASTM E1820-11. Standard Test Method for Measurement of Fracture Toughness
ASTM International: West
Conshohocken, PA, USA, 2018.
42. Dzioba, I.
Lipiec, S. Fracture Mechanisms of S355 Steel-Experimental Research, FEM Simulation and SEM
Observation. Materials 2019, 12, 3959. [CrossRef]
43. Dzioba, I.
Pała, R. Strength and Fracture Toughness of Hardox-400 Steel. Metals 2019, 9, 508. [CrossRef]
44. Neimitz, A.
Dzioba, I. The influence of the out-of- and in-plane constraint on fracture toughness of high
strength steel in the ductile to brittle transition temperature range. Eng. Fract. Mech. 2015, 147, 431–448.
[CrossRef]
45. Bai, Y.
Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int.
J. Plast. 2008, 24, 1071–1096. [CrossRef]
46. Bai, Y.
Wierzbicki, T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int. J. Fract. 2009,
161, 1–20. [CrossRef]
47. Neimitz, A.
Galkiewicz, J.
Dzioba, I. Calibration of constitutive equations under conditions of large strains
and stress triaxiality. Arch. Civ. Mech. Eng. 2018, 18, 1123–1135. [CrossRef]
8. Neimitz, A.
Galkiewicz, J.
Lipiec, S.
Dzioba, I. Estimation of the Onset of Crack Growth in Ductile Materials.
Materials 2018, 11, 2026. [CrossRef] [PubMed]
49. Krampikowska, A.
Pała, R.
Dzioba, I.
Swit, G. The Use of the Acoustic Emission Method to Identify Crack
Growth in 40CrMo Steel. Materials 2019, 12, 2140. [CrossRef]